導航:首頁 > 化學知識 > 如何判別水化學類型

如何判別水化學類型

發布時間:2022-08-27 23:17:47

㈠ 化學:冰和水怎麼鑒別

鑒別如下:

  1. 冰是固體,水是液體

  2. 冰的溫度低於0攝氏度,一般水的溫度大於0攝氏度(除非過冷水)

此外冰,水都是H2O組成,為無色無味,透明。

冰,是由水分子有序排列形成的結晶,水分子間靠氫鍵連接在一起形成非常「開闊」(低密度)的剛性結構。

最鄰近水分子的O—O 核間距為0.276nm,O—O—O鍵角約為109°,十分接近理想四面體的鍵角109°28′。但僅是相鄰而不直接結合的各水分子的O一O間距要大的多,最遠的要達0.347nm。每個水分子都能結合另外4個水分子,形成四面體結構,所以水分子的配位數為4。

相關介紹:

水(化學式為H₂O),是由氫、氧兩種元素組成的無機物,無毒,可飲用。在常溫常壓下為無色無味的透明液體,被稱為人類生命的源泉,是維持生命的重要物質。

水是地球上最常見的物質之一。地球表面有71%被水覆蓋。它是包括無機化合、人類在內所有生命生存的重要資源,也是生物體最重要的組成部分。

純水導電性十分微弱,屬於極弱的電解質。日常生活中的水由於溶解了其他電解質而有較多的陰陽離子,才有較為明顯的導電性。

㈡ 水化學類型

這種表示方式是舒卡列夫分類中的一部分,單憑借你給的這個沒有辦法區分地下水類型,還需要有礦化度的數值才行,我給你解釋一下舒卡列夫分類。

地下水化學分類:舒卡列夫分類(據前蘇聯學者CAЩукалев)

首先,根據地下水中主要七種離子(其K+和Na+中合並,分為6種)的相對含量進行組合分類的一種方法。

如果某種離子含量(毫克當量百分數,或視毫摩爾百分含量)≥25%,參與組合定名,給定編號;

三類陽離子(Ca2+、Mg2+、K+和Na+)可以有7種組合方式;

三類陰離子(HCO3-、SO42-、Cl-)也可組合為7種;

陰、陽離子再組合共計為:7×7=49種水型,參見下表。

你所提到的HS-CM指的就是圖標中第9類,字母是化學式的簡寫,具體按照表去校對。

其次,再加上礦化度大小分為4組,即

A——<1.5g/L,

B——1.5~10g/L

C——10~40g/L

D——>40g/L

例如,上述庫爾洛夫式所表示的地下水為:B—46,即中等礦化度的Cl—NaCa型水

通常,A—1號水表示沉積岩地區淺層溶濾水的特點。而49—D型則是礦化度大於40g/L的Cl—Na型水,可能是與海水及海相沉積有關的地下水。

舒卡列夫分類表簡明易查,在系統分析水樣的化學試驗結果中被廣泛利用。

這樣你明白了嗎?望採納

㈢ 鹽湖水化學分類

(一)水化學類型分類方案

鹽湖水化學類型分類一般有阿列金、庫爾納可夫-瓦良什科、奧格斯特、M.T.瓦里亞什科等分類方案。

本書採用M.T.瓦里亞什科的水化學分類方案,把鹽湖鹵水分為3種基本化學類型:碳酸鹽型、硫酸鹽型和氯化物型。其中硫酸鹽型包括硫酸鈉亞型和硫酸鎂亞型(表4-3)。

表4-3 鹽湖分類簡表

(二)水化學類型的形成

西藏鹽湖水化學類型的形成及演化,總體上還處在補給源的控製作用之下,承襲著補給水的水化學類型,同時亦遵循著正向演化規律。

1.碳酸鹽型

大量研究已經表明,碳酸鹽型湖的形成,主要與補給重碳酸鈉水有關。而重碳酸鈉的形成主要因素為:鈉硅酸鹽(尤其是長石)岩石的風化水解;粘土等膠體中Ca2+,Mg2+與Na的置換作用;硫化物的生物化學還原作用;水中H與岩石礦物中Na的水解作用;有機質的變質作用;深部含碳酸鈉水的補給等。上述各作用過程中,褶皺山區、斷裂帶均有利於空氣中CO2和水與岩石的反應。而蝕源區補給佔主導的地區,則主要通過含長石類岩石的水解作用,並具有區域性分布規律。就西藏本區而言,蝕源區富長石岩石與水解作用和近代強烈的地熱水和火山活動,是碳酸鹽型湖形成的主要因素。

2.硫酸鈉亞型

主要與含石膏層或較豐富的硫化物及部分區域內的長石風化水解有關。因石膏具有一定溶解性,而形成硫酸鹽型水。硫化物在氧化過程中形成硫酸,並與周邊鈣、鎂碳酸鹽反應,而在天然水中富集鈣或鎂以及硫酸根離子。區內雁石坪群含膏鹽層的碳酸鹽和碎屑岩、新近系康托組的含膏鹽層碎屑岩類和燕山期富長石花崗岩類是硫酸鈉亞型鹽湖形成的重要因素。

3.硫酸鎂亞型

該類水型與硫酸鈉亞型同為硫酸鹽型,其形成機理大致相同,所不同的是它與地層中的膏鹽層厚度系數以及碳酸鹽類中鎂的含量正相關。除發育雁石坪群和康托組含膏地層外,另發育大面積的上新統嗩吶湖組,其石膏層含量明顯要多。

4.氯化物型

該類型湖泊,多數研究認為是湖泊正向演化最晚期產物。就區內氯化物型湖泊的特徵來看,並不完全一致。如多格錯仁、東月湖以及羊湖等,雖屬氯化物型,但這些顯然不像柴達木盆地氯化物型鹽湖,有很長的演化歷史和大量的鹽類沉積,且尚屬鹽湖早期,礦化度也不是很高。它的成因可能與補給水有選擇性溶解大量氯化物有關。

㈣ 在化學中怎麼鑒別水

通入無水硫酸銅白色粉末
白色粉末變藍就證明有水(五水合硫酸銅)
CuSO4+5H2O=CuSO4•5H2O
樓主的問題補充:
1、可以向混合液中通入溴,水層是淡黃色,有機溶劑顏色比水中顏色深
2、向混合物中加入丙三醇,通過密度確定哪一層是水

㈤ 地下水水化學類型分類方法,這個是根據什麼規范分類的呢

地下水分高硬度水、低硬度水、礦泉水

㈥ 地下水化學類型用舒卡列夫法怎麼分類啊,望高手指點下,舉幾個具體的例子 不勝感激!

根據礦化度大小, 將地下水分為四組:A組為礦化度40g/L.(網路的答案)
按照礦化度的大小,可以將地下水分為5類:淡水

㈦ 地下水水化學類型變化

隨著地下水開采量不斷增加,地下水的天然水化學平衡狀態被打破,水化學類型也相應發生改變。其變化特徵分為兩種:①水化學類型向重碳酸型水轉變,地下水硬度增加;②水化學類型由重碳酸型水轉變為其他類型,礦化度增大,水質變差。

1.水化學類型向重碳酸型水轉變,地下水硬度增高

主要發生在山前沖洪積扇前緣和地下水開采漏斗區,由於循環條件的改變,地下水流場發生變化,淺層地下水循環加快。根據目前掌握的資料來看,這種水化學類型變化在西北乾旱區基本上沒有發生,而在山西六大盆地和華北平原及松嫩平原變化比較明顯。

山西盆地淺層地下水化學類型的變化表現為由多種水化學類型逐漸轉變為簡單的類型。對比太原盆地1983年和2003年兩期水化學變化可見:水化學類型由重碳酸-硫酸型水、重碳酸-氯化物型水、硫酸型水、硫酸重-碳酸型水、硫酸-氯化物型水、氯化物-硫酸型水、氯化物-重碳酸型水等多種水質類型變化到目前以重碳—酸硫酸型水和重碳酸—氯化物型水為主(圖5-1和圖5-2)。1983年礦化度為1~3g/L的面積為1657km2,3~5g/L的面積為40km2;2003年為895km2,基本沒有大於3g/L水。在地下水集中開采區,中深層承壓水的礦化度和硬度有增加的趨勢(圖5-3)。

忻州盆地從20世紀70年代以來,沖洪積傾斜平原的中上部的淺層地下水,其地下水主要化學成分及化學類型變化不大,地下水主要化學成分及化學類型變化不大,為重碳酸型水,礦化度小於500mg/L。而在滹沱河中下游段的沖洪積交接帶及沖湖積平原區,礦化度減小,水質具有變好的趨勢。在崞陽到原平市城區一帶,由重碳酸-硫酸型或硫酸-重碳酸型轉化為重碳酸型水(圖5-4),礦化度由1977年的520~840mg/L降低到2004年的310~510mg/L。在忻府區解原、忻府城區、東樓、西張、雙堡、官莊一帶,由硫酸-重碳酸或重碳酸-氯化物型水轉化為重碳酸型水,礦化度由1977年的500~1300mg/L降低到2004年的300~350mg/L。而在忻府區、定襄縣的高城、北張、受祿、定壤縣城、季庄等廣大地區,由重碳酸-氯化物型水轉化為重碳酸-硫酸型水,礦化度由1977年的1000~1600mg/L,降低到2004年的600~930mg/L。

圖5-1 太原盆地1983年水化學圖

(據韓穎等,2009)

(圖中Cl、H、S、N、M、C分別表示Cl、HCO3、SO4、Na、Mg、Ca)

據統計,河北平原淺層地下水重碳酸鹽型(包括重碳酸為主的混合型)水的分布面積由1975年的45792km2增加到2005年的56032km2,硫酸鹽型(包括硫酸鹽為主的混合型)地下水面積由7294km2減少到4279km2,氯化物型(包括氯化物為主的混合型)地下水由19588km2減少到12818km2,見圖5-5。

圖5-2 太原盆地2003年水化學圖

(據韓穎等,2009)

(圖中Cl、H、S、N、M、C分別表示Cl、HCO3、SO4、Na、Mg、Ca)

對比魯北平原1989年與2005年地下水水化學類型(圖5-6)可見:西部地下水開采區,水化學類型向重碳酸鹽型水轉化,淺層地下水開采程度較高,沿黃河地帶受到地表淡水的經常性補給,重碳酸鹽型水的分布范圍不斷擴大。冠縣-臨清的廣大地區,1984年水化學類型為重碳酸鹽氯化物型水,目前均變為重碳酸鹽型水;東阿、平原大部、陽谷、夏津、武城、濟陽局部均由1989年的重碳酸鹽氯化物型水、重碳酸-硫酸鹽-氯化物型水轉變為重碳酸鹽型水。

圖5-3 太原盆地西張水源地中深層水水質變化曲線

(據韓穎等,2009)

豫北平原淺層地下水(重碳酸鹽型水)從山前及黃河上游向下游、由渠道軸部向兩側擴展。在1959年至1965年間,地下水開采量很小,豫北地區地表大部分為鹽鹼地,沿黃一帶只有局部地區礦化度小於1g/L,水化學類型大部分為重碳酸硫酸鹽型水,只有封丘縣一帶、武陟縣和原陽的黃河大堤以南局部地區為重碳酸型水。人民勝利渠渠首區為HCO3-Ca·Mg水,礦化度小於1g/L。到1978年沿人民勝利渠和其它渠道兩側地下水礦化度大於1g/L界線向北和東擴展,新鄉市東部的鹹水被切開成兩部分,西部的交接窪地地下水礦化度大於1的鹹水區成孤立狀分布,濮陽縣至南樂的地下水礦化度小於1g/L的淡水已連為一體,重碳酸型水已擴至武陟、原陽、封丘北部。至1987年,大部分地區地下水礦化度已變為小於1g/L的淡水;大於1g/L的水已成孤島狀分布於各地,大部分地區地下水水化學類型已變為重碳酸型水,而陽離子Na·Ca型水面積逐漸擴大至原陽縣。2002年,淡水面積基本穩定,鹹水在1987年基礎上又有縮小,沿黃一帶僅在封丘東南部的黃河轉彎處有一些鹹水,淡水擴展緩慢,重碳酸型水擴展緩慢。

華北平原深層地下水重碳酸型水面積增加主要集中在河北平原,其分布面積由20世紀70年代的 50295km2增加到 55066km2,硫酸鹽型地下水面積由 1129km2增加到1463km2,氯化物型地下水由6343km2增加到10850km2(表5-1)。天津地區第Ⅱ含水組大量開采後,其水化學特徵並沒有發生明顯變化。

圖5-4 忻州盆地地下水化學類型及礦化度動態曲線

(據韓穎等,2009)

表5-1 河北平原深層地下水水化學類型分布面積變化統計表 單位:km2

(據張兆吉等,2009)

圖5-5 不同年份淺層水化學類型面積

(據張兆吉等,2009)

圖5-6 魯北平原淺層地下水水化學類型變化圖

(據張兆吉等,2009)

西遼河平原部分地區水化學類型從20世紀70年代末80年代初的HCO3-Na·Ca水轉變成了HCO3-Ca·Na水,HCO3-Ca·Na水轉變成了HCO3-Ca水。在地下水的強開采區(平原中部開魯、奈曼、科爾沁區),地下水循環交替較快,占絕對優勢的Ca·Na型水、Ca·Na·Mg型水面積,2003年比70、80年代有較大增加,與此相反,Na型水、Na·Ca型水面積則明顯減少。科左後旗一帶的Ca·Na型水,則轉化為Ca型水(圖5-7)。

圖5-7 西遼河平原地下水化學類型變化

(據李志等,2009)

2.水化學類型由重碳酸型水轉變為其他類型水,地下水礦化度增大

主要發生在平原或盆地的中下游以及深層承壓含水層開采漏斗區,地下水流場改變,承壓含水層水頭低於相鄰含水層,劣質水越流補給承壓含水層。目前在新疆准噶爾盆地局部、柴達木盆地、山西盆地和華北平原及東北平原變化比較明顯。

新疆准噶爾盆地沙漠邊緣的承壓含水層,由於開采地下水使承壓含水層水頭低於潛水,高礦化度和高硬度潛水的混入承壓含水層,20世紀80年代中期以來水化學類型明顯變化,由HCO3·SO4-Na水轉化為SO4·Cl-Na水。

柴達木盆地冷湖鎮在開采地下水時出現了鹹水入侵現象,冷湖鎮水源地在冷湖北岸沖洪積扇潛水區,開采時動水位11~13m,之後形成了下降漏斗,其半徑956~1130m,漏斗已擴展到半鹹水、鹹水區,引起了鹹水倒灌。該水源地水質變咸後於1989年在原水源地北又重新開辟新的水源地。經2002年、2003年和2004年在水源地取樣分析,一些水井水質已變咸,水化學類型屬SO4·Cl·(HCO3)-Ca·Mg水。

格爾木河沖洪積扇戈壁帶右翼也出現水質咸化現象,主要原因是該地區地表或淺層普遍存在一層古鹽殼,在開采過程中,由於管道漏水等原因將鹽殼中的鹽分溶濾到含水層中,導致水質咸化;20世紀80年代初該地區地下水位普遍上升,溶濾了古鹽殼的鹽分,也造成水質咸化;另外,1998、1999年兩年格爾木市農牧局為綠化城市於水源地上游營造了60畝防風林帶,採用大水漫灌,使包氣帶鹽分溶解並大量下滲而造成礦化度等急劇升高。

臨汾盆地20世紀60年代、80年代及2004年水化學對比分析發現,從邊山到盆地中心汾河一線,淺層水質序列已經發生明顯變化(表5-2),變化的整體趨勢是山前沖洪積扇地帶HCO3 型水區普遍後移或者消失,取而代之的是HCO3·SO4 型水或者SO4·HCO3型水,SO4·HCO3型水及HCO3·SO4型水的區域分布面積明顯變大,中深層水質也有一定程度的改變。

表5-2 臨汾盆地代表性剖面淺層水水質序列變化

(據韓穎等,2009)

運城盆地淺層地下水20年來水化學類型相對趨於簡化,水質相對變差,礦化度有增高的趨勢(圖5-8)。在涑水河谷中游東鎮—聞喜—水頭一線,水質類型由1980年的HCO3—Na、HCO3·SO4—Na、SO4·HCO3—Na、Cl·HCO3—Na、SO4—Na型水,逐漸變為2004年的HCO3、Cl型水,並且范圍變大,礦化度增高。在夏縣縣城附近,HCO3、Cl型水的范圍2005年比1980年明顯增大,水質相對變差,礦化度增高。在臨猗嵋陽一帶,HCO3·SO4型水,由1980年的零星分布,逐漸變為片狀,水質變差,礦化度增高,在湖積平原區伍姓湖一帶,Cl·SO4型水范圍2005年與1980年變化明顯增大,礦化度增高。

圖5-8 運城盆地淺層水水化學變化圖

(據韓穎等,2009)

圖5-9 運城盆地中深層水水化學變化圖

(據韓穎等,2009)

運城盆地中部中深層含水層因為地下水開采導致淺層水進入致使水質變差。從盆地1980年和2005年中深層含水層水化學圖5-12和圖5-13可以看出,經過20多年的時間,盆地中深層含水層水化學場變化較為明顯的地帶,主要出現在盆地中部的涑水河沖洪積平原,水化學類型由20世紀80年代的HCO3、HCO3·SO4、HCO3·Cl、SO4·HCO3、SO4·Cl、Cl·SO4 型水演化為2005年的HCO3、HCO3·SO4、SO4·HCO3、SO4·Cl、Cl·HCO3、Cl型水,水化學類型趨於復雜,礦化度有升高之趨勢,主要原因是由於地下水強烈開采,地下水流場發生變化及在鑿井過程中,使含水層串通、使水質較差的淺層水灌入中深層水中所致。

魯北平原東部濱海地帶的氯化物型水向中西部擴展。在茌平—齊河—禹城—臨邑一線、寧津和陵縣的東部地區,由重碳酸鹽型水變為重碳酸—氯化物型水和重碳酸—硫鹽型水。在慶雲—陽信一線、濱州市濱城區、利津和沾化交界地帶,地下水由重碳酸—硫酸氯化物型水、重碳酸—氯化物型變為氯化物型水。

松嫩平原山前傾斜平原第四系潛水,在20世紀80年代,水化學類型主要是HCO3-Ca·Na水,其次是HCO3·Na水,再次是HCO3-Ca·Mg水。HCO3·SO4 型水只在北部訥河、齊齊哈爾、龍江和林甸縣一帶有少量分布,目前,泰來縣也出現了HCO3·SO4 型水。低平原第四系潛水近20年來地下水水化學類型復雜化,氯化物型水分布面積增大,數量增多,出現了許多新的水化學類型,最典型的是硝酸型水。20世紀80年代,高平原北部潛水水化學類型主要是HCO3型水,局部有HCO3·SO4 型水;HCO3·Cl型水在呼蘭河以南地區大片出現、以北零星分布。目前調查發現,在高平原區綏化一帶HCO3·SO4(SO4·HCO3)型水及SO4·Cl(Cl·SO4)型水已成片分布。在呼蘭河以北地區HCO3·Cl(Cl·HCO3)型水大面積向北擴展。水化學類型變化最大的是呼蘭河以北的農業地區,出現了大量與硝酸相關的水化學類型,如 HCO3·NO3(NO3·HCO3)-Ca·Mg 型水、NO3-Ca·Mg型水及NO3·HCO3型水等。

松嫩高平原第四系承壓水20世紀80年代,主要水化學類型是HCO3 型水,本次調查發現,在盆地北部呼蘭河一帶和哈爾濱市,出現了大面積的HCO3-SO4-Ca型水。HCO3-Cl-Ca型水分布面積也比80年代增多。

㈧ 水化學類型怎麼讀

這指的是水中的離子種類
分別是:
碳酸氫根、鈣離子、鈉離子
碳酸氫根、硫酸根、鈣離子、鈉離子
碳酸氫根、鈉離子
你可以直接念這些離子或者將其拼成鹽的形式念(不推薦):
碳酸氫鈣、碳酸氫鈉
碳酸氫鈣、硫酸鈉
碳酸氫鈉

㈨ 水化學類型的劃分

關於地下水的化學分類,不同的作者提出了不同的方法,其中大多數都在一定程度上利用了主要陰離子與主要陽離子間的對比關系。

1.舒卡列夫分類法

舒卡列夫分類根據地下水中6種主要離子(Na+、Ca2+、Mg2+

、Cl、K+合並於Na+)及礦化度劃分。具體步驟如下:

第一步,根據水質分析結果,將6種主要離子中毫克當量百分數大於25%的陰離子和陽離子進行組合,可組合出49型水,並將每型用一個阿拉伯數字作為代號(表1—4)。

第二步,按礦化度的大小劃分為4組。

A組 M≤1.5g/L;

B組 1.5<M≤10g/L;

C組 10<M≤40g/L;

D組 M>40g/L。

第三步,將地下水化學類型用阿拉伯數字(1~49)與字母(A、B、C或D)組合在一起表示。

例如,1—A型,表示礦化度不大於1.5g/L的HCO3—Ca型水,沉積岩地區典型的溶濾水;49—D型,表示礦化度大於40g/L的Cl—Na型水,該型水可能是與海水及海相沉積有關的地下水,或是大陸鹽化潛水。

這種分類法的優點是簡明易懂,可以利用此表系統整理水分析資料。其缺點是:以毫克當量大於25%作為劃分類型的依據不充分,此外,劃分出的49種水型是由組合方法得到,實際上有些水型在自然界中很少見到,也難以解釋它的形成過程。

表1—4 舒卡列夫分類表

2.布羅德斯基分類法

布羅德斯基分類法與舒卡列夫分類法相似,都是考慮六種主要離子成分及礦化度,兩者間所不同的是將陰、陽離子各取一對進行組合,便得出36種地下水類型,礦化度按圖1—7進行分類。

圖1—7 布羅德斯基分類法示意圖

1—<0.5g/L;2—0.5~1g/L;3—1~5g/L;4—5~30g/L;5—>30g/L;6—沉積岩中循環水礦化作用的一般方向;7—火成岩中循環水礦化作用的一般方向

布羅德斯基分類法的優點:即可用來分析地下水形成的規律和循環條件。例如在典型的山前傾斜平原的地下水,其化學成分的形成和作用方向具有一定的規律;在徑流帶內,地下水運動比較強烈,岩石中的可溶性鹽類大部分被溶解,剩下的只是鈣、鎂的碳酸鹽,所以在這一帶的地下水為淡水(礦化度小於1g/L),到了溢出帶,地下水的礦化度逐漸增高,當地下水流至垂直交替帶時,不僅運動緩慢,而且消耗於蒸發,故地下水礦化度極高。這種礦化度由低逐漸增高的作用,布羅德斯基稱它為總礦化作用。

布羅德斯基分類法的缺點:當兩種離子的含量差別不大時,這種主次劃分就失去了意義,甚至可能將本來屬於同一類的水劃分為不同類型。此外,這種分類是不管成對離子含量多少,都要陰陽離子各取一對,如果水中僅有一種離子含量占優勢,而另一種離子含量甚微時,分類中仍要表示出來,這樣會導致在分析水化學成分形成規律時不能確定主導因素,可能會得出某些不正確的結論。

3.阿廖金分類法

阿廖金分類法是由俄國學者O.A.Aleken提出的,按水體中陰陽離子的優勢成分和陰陽離子間的比例關系確定水質化學類型的一種方法。該方法的具體操作步驟如下:

第一步,列出各計算分區中具有代表性水樣的

、Cl等3個陰離子和Ca2+、Mg2+、Na+等3個陽離子的濃度含量(均以毫克當量表示)。

第二步,根據各水樣中含量最多的陰離子將這些水樣分為三類:重碳酸類(以C表示)、硫酸類(以S表示)、氯化類(以Cl表示),它們的礦化度依次增加,水質變差。

第三步,在每類中再根據水樣中含量最多的陽離子進一步分為鈣質(Ca)、鎂質(Mg)、鈉質(Na,鉀與鈉合並)三組。

第四步,按各水樣中陰陽離子含量的比例關系分為四種類型:

Ⅰ型

,在S類與Cl類的Ca及Mg組中均無此型;

Ⅱ型

,多數淺層地下水屬於此型;

Ⅱ型

,或Cl>Na+,此型為高礦化水;

Ⅳ型

。此型為酸性水,C類各組及S和Cl類的Na組中無此型。

阿廖金分類圖解如圖1—8所示。

圖1—8 阿廖金分類圖解

第Ⅰ型水的特點是

。該型水由火成岩地區溶濾作用形成,含有相當數量的鈉和鉀,它也可以由水中的鈣同岩石中鈉之間的交換作用形成。該型水是鹼性的軟水,礦化度低(在內陸湖中或某些油田水中,可以出現高礦化度)。

第Ⅱ型水的特點是

,硬度大於鹼度。從成因上講,該型水與各種沉積岩有關,主要是混合水。大多屬低礦化度和中礦化度的河水。湖水和地下水屬於這一類型(有

硬度)。

第Ⅲ型水的特點是

或者為Cl>Na+。從成因上講,該型水也是混合水,由於離子交換使水的成分劇烈變化。成因是天然水中的Na+被土壤底泥或含水層中的Ca2+或Mg2+交換。大洋水、海水、海灣水、殘留水和許多高礦化度的地下水屬於此種類型(有氯化物硬度)。

第Ⅳ型水的特點是

含量為0,即該型水為酸性水。在重碳酸類水中不包括此型,只有硫酸鹽與氯化物類水中的Ca2+組與Mg2+組中才有這一型水。天然水中一般無此類型(pH<4.0)。

上述類型的差異是水體所處自然地理環境造成的,一般來講,它們有一定的地理分布規律。

第五步,按照阿廖金的分類,水的類別是用主要陰離子的化學符號(即C、S、Cl)表示,組別用主要陽離子的化學符號(即Ca、Mg、Na)表示,而型別用腳碼表示。表達式以「類」為基號,以組為上腳號,以型為下腳號,如C類Ca組Ⅱ型可表示為

,又如Cl類Mg組Ⅳ型表示為

。此外,有時還可標上礦化度(精確度至0.1g/L),表達式為

。此分類法是兼顧了主要離子及離子間對比的劃分原則,在一定程度上反映水質特點變化的規律性。如礦化度的變化,礦化度逐漸增大的方向是:[C]<[S]<[Cl],Ca<Mg<Na,Ⅰ<Ⅱ<Ⅲ。

阿廖金分類法具有許多優點,它適用於絕大部分天然水,簡明易於記憶,而且能將多數離子之間的對比恰當的結合,可以用來判斷水的成因、化學性質及其質量。

復習思考題

1.地下水的化學組分有哪些?

2.論述地下水的形成作用有哪些?

3.掌握地下水水質的三類綜合評價指標。

4.掌握地下水化學類型的分類方法。

㈩ 求地下水水化學類型分類方法

地下水化學分類:舒卡列夫分類(據前蘇聯學者CAЩукалев)

首先,根據地下水中主要七種離子(其K+和Na+中合並,分為6種)的相對含量進行組合分類的一種方法。

如果某種離子含量(毫克當量百分數,或視毫摩爾百分含量)≥25%,參與組合定名,給定編號;

三類陽離子(Ca2+、Mg2+、K+和Na+)可以有7種組合方式;

三類陰離子(HCO3-、SO42-、Cl-)也可組合為7種;

陰、陽離子再組合共計為:7×7=49種水型,參見表6-2。

表6—2舒卡列夫分類圖表

其次,再加上礦化度大小分為4組,即

A——<1.5g/L,

B——1.5~10g/L

C——10~40g/L

D——>40g/L

例如,上述庫爾洛夫式所表示的地下水為:B—46,即中等礦化度的Cl—NaCa型水

通常,A—1號水表示沉積岩地區淺層溶濾水的特點。而49—D型則是礦化度大於40g/L的Cl—Na型水,可能是與海水及海相沉積有關的地下水。

舒卡列夫分類表簡明易查,在系統分析水樣的化學試驗結果中被廣泛利用。

閱讀全文

與如何判別水化學類型相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:666
乙酸乙酯化學式怎麼算 瀏覽:1338
沈陽初中的數學是什麼版本的 瀏覽:1275
華為手機家人共享如何查看地理位置 瀏覽:959
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:813
數學c什麼意思是什麼意思是什麼 瀏覽:1328
中考初中地理如何補 瀏覽:1224
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:634
數學奧數卡怎麼辦 瀏覽:1306
如何回答地理是什麼 瀏覽:955
win7如何刪除電腦文件瀏覽歷史 瀏覽:986
大學物理實驗干什麼用的到 瀏覽:1408
二年級上冊數學框框怎麼填 瀏覽:1619
西安瑞禧生物科技有限公司怎麼樣 瀏覽:760
武大的分析化學怎麼樣 瀏覽:1176
ige電化學發光偏高怎麼辦 瀏覽:1265
學而思初中英語和語文怎麼樣 瀏覽:1561
下列哪個水飛薊素化學結構 瀏覽:1356
化學理學哪些專業好 瀏覽:1420
數學中的棱的意思是什麼 瀏覽:977