導航:首頁 > 化學知識 > 化學如何改變世界

化學如何改變世界

發布時間:2022-09-08 02:59:26

A. 化學如何改變了世界論文 給一個1000字左右在線等 好了給分

提綱
一是化學的特點
二是化學與世界的聯系
三說明化學的重要性

B. 近代化學界的重要成就有哪些

這五項化學發明改變了世界
LCD屏幕隨處可見——甚至在美術館。圖片來源:Dominic Alves/Flickr, CC BY-SA
不論你是否承認,跟其他學科相比,化學常常是被忽略的那一個。《科學》雜志在Twitter上公布的50位科學大師中,沒有一位是化學家;化學新聞往往也不像物理和天文項目那樣受關注,即便項目的主要內容是登陸彗星以後在上面進行的化學實驗。
英國皇家化學學會調查了人們對化學、化學家和化學品的真實想法,結果表明,大多數人並不十分了解化學家在做什麼,也不清楚化學對現代社會有哪些貢獻。
化學名人堂。圖片來源:Andy Brunning/[Compound Interest], Author provided
這真是太遺憾了,要知道,沒有化學就沒有現代社會。為此,我挑選了五項最重要的化學發明,正是它們塑造了我們所處的現代世界。
青黴素
這可不是牛棚,而是戰時的青黴素生產車間。圖片來源:Wellcome Images
青黴素很可能挽救過你的生命。沒有它,哪怕是小小刺傷或喉嚨痛都可能致命。1928年亞歷山大•弗萊明發現培養皿上的霉塊能抑制周圍細菌的生長,並把發揮抑菌作用的化學物質稱為青黴素(又稱盤尼西林,penicillin)。
但是,他窮其所能也未曾從黴菌提取出可以使用的青黴素。弗萊明放棄了,他的工作也沉寂了10年之久。直到1939年,澳大利亞葯理學家霍華德•弗洛里(Howard Florey)和他的化學家團隊才終於找到了一種大量提純青黴素的方法,使之真正投入使用。
然而,當時正值第二次世界大戰爆發,科學儀器非常短缺。該團隊只得用浴缸、牛奶攪拌器和書架組裝成一個功能齊備的青黴素生產車間。不出意料,媒體被這種神奇的新葯震驚了,但弗洛里和他的同事都不喜歡拋頭露面,反而是弗萊明出了風頭。
圖為弗洛里。圖片來源:Howard Florey. Wikimedia
青黴素的大規模生產始於1944年,化學工程師瑪格麗特•哈欽森•魯索(Margaret Hutchinson Rousseau)將弗洛里設計的半調子的儀器設備改進為大規模生產車間。
哈伯-博斯(Haber-Bosch)制氨法
氮肥的出現使農業生產發生了翻天覆地的變化。圖片來源:eutrophication&hypoxia/Flickr, CCBY-SA
氮元素在每一個生命體的生物化學反應中都扮演著極為重要的角色,氮氣還是空氣的主要成分。不過氮氣通常比較惰性,這意味著植物和動物無法從空氣中直接獲得氮。因而,氮的來源問題一直是農業生產的主要瓶頸。
1910年,德國化學家弗里茨•哈伯(Fritz Haber)和卡爾•博斯(Carl Bosch)用氮氣和氫氣制備出氨氣,改變了這一切。它可以作為肥料,提高作物產量,最終為人類提供更多的食物。
如今,我們體內80%的氮都來自於哈伯-博斯制氨法,這個化學反應幾乎是過去一百年間人口暴漲的最主要原因。
聚乙烯——意外的發明
雖是塑料,但歷史悠久,價值斐然。圖片來源:Dacidd/Flickr, CC BY-SA
大部分塑料製品,從水管到食品袋和安全帽,都由聚乙烯製成。這種年產量8000萬噸、在現代生活中不可或缺的材料,來源於兩次意外發現。
第一次發生在1898年,德國化學家漢斯•馮•佩希曼(Hans von Pechmann)發現他的試管底有一些蠟狀的奇怪物質。他和同事一道研究了這個物質,發現它是一種長鏈分子,稱之為聚亞甲基(polymethylene)。不過他們的制備方法沒有實用價值,因而像青黴素的故事一樣,在相當長的一段時間里都毫無進展。
到了1933年,ICI(一家已被收購的化學品公司)的化學家終於發明了一種製造聚乙烯的新方法。他們在一些高壓反應中發現了馮•佩希曼曾留意過的蠟狀物質。一開始他們沒法重復這個反應,後來發現最初的反應中,氧氣泄露進了反應體系。兩年後ICI將這一偶然發現變成了實用的合成方法,生產出了如今唾手可得的塑料。
從墨西哥山葯中提取出的避孕葯
美味的墨西哥山葯。圖片來源:KatjaSchulz/Flickr, CC BY-SA
早在20世紀30年代,醫生們便知道激素可以用來治療癌症和月經失調,也能用於避孕,但相關研究由於缺少高效合成激素的方法而陷入停滯。當時黃體酮價格高達每克1000美元(以今天的物價水平),而如今每克只賣幾美元。
賓夕法尼亞州立大學的有機化學教授拉塞爾•馬克(Russel Marker)發現了合成黃體酮的捷徑,降低了生產成本。他在植物中尋找結構類似黃體酮的分子,最終在墨西哥山葯中分離得到一種化合物,只需一步便能轉化成黃體酮,製成第一代避孕葯。
你面前的液晶顯示屏
LCD屏幕在顯示搖滾音樂會的場景。圖片來源:lan T. McFarland/Flickr, CC BY-SA
你一定想不到,平面彩色顯示器的歷史居然可以追溯到20世紀60年代晚期:當時英國國防部想要發明一種新的平面顯示器,以代替軍用車輛裝備的笨重且昂貴的陰極管顯示器。研究人員立即想到可以利用液晶材料來實現,當時已經有人提出了液晶顯示器(LCD)的概念,但問題是它們只能在高溫下工作。除非你把它們安裝在烤箱中,否則沒什麼實用價值。
1970年,英國國防部委託赫爾大學(University of Hull)的喬治•格雷(George Gray),讓他想辦法使LCD能在更實用的溫度下工作。他合成出了一種新的分子叫做5CB,終於實現了這一點。20世紀70年代晚期到80年代早期,全世界90%的LCD設備都使用了5CB,直到現在,便宜的手錶和計算器中仍在使用它。同時,5CB的衍生物也直接促進了手機、電腦、電視的誕生。

C. 化學改變世界的途徑是什麼

分子——相互關聯,相互轉化的分子,以及相互支持的分子(如催化劑)。

D. 德國化學對世界的影響

20世紀化學的輝煌成就
20世紀人類對物質需求的日益增加以及科學技術的迅猛發展,極大的推動了化學學科自身的發展。化學不僅形成了完整的理論體系,而且在理論的指導下,化學實踐為人類創造了豐富的物質。從19世紀的經典化學到20世紀的現代化學的飛躍,從本質上說是從19世紀的道爾頓原子論、門捷列夫元素周期表等在原子的層次上認識和研究化學,進步到20世紀在分子的層次上認識和研究化學。如對組成分子的化學鍵的本質、分子的強相互作用和弱相互作用、分子催化、分子的結構與功能關系的認識,以至1900多萬種化合物的發現與合成;對生物分子的結構與功能關系的研究促進了生命科學的發展。另一方面,化學過程工業以及與化學相關的國計民生的各個領域,如糧食、能源、材料、醫葯、交通、國防以及人類的衣食住行用等,在這100年中發生的變化是有目共睹的。過去的100年間化學學科的重大突破性成果可從歷屆諾貝爾化學獎獲得者的重大貢獻中獲悉

歷屆諾貝爾化學獎獲獎簡況

獲獎年份獲獎者國籍獲獎成就
1901J. H. van』t Hoff荷蘭溶劑中化學動力學定律和滲透壓定律
1902E. Fisher德國糖類和嘌啉化合物的合成
1903S. Arrhenius瑞典電離理論
1904W. Ramsay英國惰性氣體的發現及其在元素周期表中位置的確定
1905A. von Baeyer德國有機染料和氫化芳香化合物的研究
1906H. Moissan法國單質氟的制備,高溫反射電爐的發明
1907E. Buchner德國發酵的生物化學研究
1908E. Rutherford英國元素嬗變和放射性物質的化學研究
1909W. Ostwald德國催化、電化學和反應動力學研究
1910O.Wallach德國脂環族化合物的開創性研究
1911M.Curie波蘭放射性元素釙和鐳的發現
1912V. Grignard
P. Sabatier法國
法國格氏試劑的發現
有機化合物的催化加氫
1913A. Werner瑞士金屬絡合物的配位理論
1914Th. Richards美國精密測定了許多元素的原子量
1915R. Willstatter德國葉綠素和植物色素的研究
1916無
1917無
1918F.Haber德國氨的合成
1919無
1920W. Nernst德國熱化學研究
1921F. Soddy英國放射性化學物質的研究及同位素起源和性質的研究
1922F. W. Aston英國質譜儀的發明,許多非放射性同位素及原子量的整數規則的發現
1923F. Pregl奧地利有機微量分析方法的創立
1924無
1925R. Zsigmondy德國膠體化學研究
1926T. Svedberg瑞士發明超速離心機並用於高分散膠體物質研究
1927H. Wieland德國膽酸的發現及其結構的測定
1928A. Windaus法國甾醇結構測定,維生素D3的合成
1929A.Harden
H. von Euler-Chelpin英國
法國糖的發酵以及酶在發酵中作用的研究
1930H. Fischer德國血紅素、葉綠素的結構研究,高鐵血紅素的合成
1931C.Bosch
F. Bergius德國
德國化學高壓法
1932J. Langmuir美國表面化學研究
1933無
1934H. C. Urey美國重水和重氫同位素的發現
1935F. Joliot-Curie
I. Joliot-Curie法國
法國新人工放射性元素的合成
1936P. Debye荷蘭提出了極性分子理論,確定了分子偶極矩的測定方法
1937W. N. Haworth
P. Karrer英國
瑞士糖類環狀結構的發現,維生素A、C和B12、胡蘿卜素及核黃素的合成
1938R. Kuhn德國維生素和類胡蘿卜素研究
1939A.F. J. Butenandt
L. Ruzicka德國
瑞士性激素研究
聚亞甲基多碳原子大環和多萜烯研究
1940無
1941無
1942無
1943G. Heresy匈牙利利用同位素示蹤研究化學反應
1944O. Hahn德國重核裂變的發現
1945A. J. Virtamen荷蘭發明了飼料貯存保鮮方法,對農業化學和營養化學做出貢獻
1946J. B. Sumner
J. H. Northrop
W. M. Stanley美國
美國
美國發現酶的類結晶法
分離得到純的酶和病毒蛋白
1947R. Robinson英國生物鹼等生物活性植物成分研究
1948A. W. K. Tiselius瑞典電泳和吸附分析的研究,血清蛋白的發現
1949W. F. Giaugue美國化學熱力學特別是超低溫下物質性質的研究
1950O. Diels
K. Alder德國
德國發現了雙烯合成反應,即Diels-Alder反應
1951E.M. Mcmillan
G. Seaborg美國
美國超鈾元素的發現
1952A.J. P. Martin
R. L. M. Synge英國
英國分配色譜分析法
1953H. Staudinger德國高分子化學方面的傑出貢獻
1954L. Pauling美國化學鍵本質和復雜物質結構的研究
1955V. . Vigneand美國生物化學中重要含硫化合物的研究,多肽激素的合成
1956C. N. Hinchelwood英國
蘇聯化學反應機理和鏈式反應的研究
1957A. Todd英國核苷酸及核苷酸輔酶的研究
1958F. Sanger英國蛋白質結構特別是胰島素結構的測定
1959J. Heyrovsky捷克極譜分析法的發明
1960W. F. Libby美國14C測定地質年代方法的發明
1961M. Calvin美國光合作用研究
1962M. F. Perutz
J. C. Kendrew英國
英國蛋白質結構研究
1963K. Ziegler
G. Natta德國
義大利Ziegler-Natta催化劑的發明,定向有規高聚物的合成
1964D. C. Hodgkin英國重要生物大分子的結構測定
1965R. B. Woodward美國天然有機化合物的合成
1966R. S. Mulliken美國分子軌道理論
1967M. Eigen
R. G. W. Norrish
G. Porter德國
英國
英國用馳豫法、閃光光解法研究快速化學反應
1968L. Onsager美國不可逆過程熱力學研究
1969D.H. R. Barton
O. Hassel英國
挪威發展了構象分析概念及其在化學中的應用
1970L. F. Leloir阿根廷從糖的生物合成中發現了糖核苷酸的作用
1971G. Herzberg加拿大分子光譜學和自由基電子結構
1972C .B. Anfinsen
S. Moore
W. H. Stein美國
美國
美國核糖核酸酶分子結構和催化反應活性中心的研究
1973G.Wilkinson
E. O. Fischer英國
德國二茂鐵結構研究,發展了金屬有機化學和配合物化學
1974P. J. Flory美國高分子物理化學理論和實驗研究
1975J. W. Cornforth
V. Prelog英國
瑞士酶催化反應的立體化學研究
有機分子和反應的立體化學研究
1976W. N. Lipscomb, Jr.美國有機硼化合物的結構研究,發展了分子結構學說和有機硼化學
1977I. Prigogine比利時研究非平衡的不可逆過程熱力學
1978P. Mitchell英國用化學滲透理論研究生物能的轉換
1979H.C. Brown
G. Wittig美國
德國發展了有機硼和有機磷試劑及其在有機合成中的應用
1980P. Berg
F. Sanger
W. Gilbert美國
英國
美國DNA分裂和重組研究,DNA測序,開創了現代基因工程學
1981Kenich Fukui
R. Hoffmann日本
美國提出前線軌道理論
提出分子軌道對稱守恆原理
1982A. Klug英國發明了「象重組」技術,利用X-射線衍射法測定了染色體的結構
1983H. Taube美國金屬配位化合物電子轉移反應機理研究
1984R. B. Merrifield美國固相多肽合成方法的發明
1985H. A. Hauptman
J. Karle美國
美國發明了X-射線衍射確定晶體結構的直接計算方法
1986李遠哲
D. R. Herschbach
J. Polanyi美國
美國
加拿大發展了交叉分子束技術、紅外線化學發光方法,對微觀反應動力學研究作出重要貢獻
1987C. J. Pedersen
D. J. Cram
J-M. Lehn美國
美國
法國開創主-客體化學、超分子化學、冠醚化學等新領域
1988J. Deisenhoger
H. Michel
R. Huber德國
德國
德國生物體中光能和電子轉移研究,光合成反應中心研究
1989T. Cech
S. Altman美國
美國Ribozyme的發現
1990E. J. Corey美國有機合成特別是發展了逆合成分析法
1991R. R. Ernst瑞士二維核磁共振
1992R. A. Marcus
美國電子轉移反應理論
1993M. Smith
K. B. Mullis加拿大
美國寡聚核苷酸定點誘變技術
多聚酶鏈式反應(PCR)技術
1994G. A. Olah美國碳正離子化學
1995M. Molina
S. Rowland
P. Crutzen墨西哥
美國
荷蘭研究大氣環境化學,在臭氧的形成和分解研究方面作出重要貢獻
1996R. F. Curl
R. E. Smalley
H. W. Kroto美國
美國
英國發現C60
1997J. Skou

P. Boyer
J. Walker丹麥

美國
英國發現了維持細胞中鈉離子和鉀離子濃度平衡的酶,並闡明其作用機理
發現了能量分子三磷酸腺苷的形成過程
1998W. Kohn
J. A. Pople美國發展了電子密度泛函理論
發展了量子化學計算方法
1999A. H. Zewail美國飛秒技術研究超快化學反應過程和過渡態

1)放射性和鈾裂變的重大發現
20世紀在能源利用方面一個重大突破是核能的釋放和可控利用。僅此領域就產生了6項諾貝爾獎。首先是居里夫婦從19世紀末到20世紀初先後發現了放射性比鈾強400倍的釙,以及放射性比鈾強200多萬倍的鐳,這項艱巨的化學研究打開了20世紀原子物理學的大門,居里夫婦為此而獲得了1903年諾貝爾物理學獎。1906年居里不幸遇車禍身亡,居里夫人繼續專心於鐳的研究與應用,測定了鐳的原子量,建立了鐳的放射性標准,同時制備了20克鐳存放於巴黎國際度量衡中心作為標准,並積極提倡把鐳用於醫療,使放射治療得到了廣泛應用,造福人類。為表彰居里夫人在發現釙和鐳、開拓放射化學新領域以及發展放射性元素的應用方面的貢獻,1911年被授予了諾貝爾化學獎。20世紀初,盧瑟福從事關於元素衰變和放射性物質的研究,提出了原子的有核結構模型和放射性元素的衰變理論,研究了人工核反應,因此而獲得了1908年的諾貝爾化學獎。居里夫人的女兒和女婿約里奧-居里夫婦用釙的射線轟擊硼、呂、鎂時發現產生了帶有放射性的原子核,這是第一次用人工方法創造出放射性元素,為此約里奧-居里夫婦榮獲了1935年的諾貝爾化學獎。在約里奧-居里夫婦的基礎上,費米用曼中子轟擊各種元素獲得了60種新的放射性元素,並發現中子轟擊原子核後,就被原子核捕獲得到一個新原子核,且不穩定,核中的一個中子將放出一次衰變,生成原子序數增加1的元素。這一原理和方法的發現,使人工放射性元素的研究迅速成為當時的熱點。物理學介入化學,用物理方法在元素周期表上增加新元素成為可能。費米的這一成就使他獲得了1938年的諾貝爾物理學獎。1939年哈恩發現了核裂變現象,震撼了當時的科學界,成為原子能利用的基礎,為此,哈恩獲得了1944年諾貝爾化學獎。
1939年費里施在裂變現象中觀察到伴隨著碎片有巨大的能量,同時約里奧-居里夫婦和費米都測定了鈾裂變時還放出中子,這使鏈式反應成為可能。至此釋放原子能的前期基礎研究已經完成。從放射性的發現開始,然後發現了人工放射性,再後又發現了鈾裂變伴隨能量和中子的釋放,以至核裂變的可控鏈式反應。於是,1942年費米領導下成功的建造了第一座原子反應堆,1945年美國在日本投下了原子彈。核裂變和原子能的利用是20世紀初至中葉化學和物理界具有里程碑意義的重大突破。
(2)化學鍵和現代量子化學理論
在分子結構和化學鍵理論方面,鮑林(L.Pauling, 1901-1994)的貢獻最大。他長期從事X-射線晶體結構研究,尋求分子內部的結構信息,把量子力學應用於分子結構,把原子價理論擴展到金屬和金屬間化合物,提出了電負性概念和計算方法,創立了價鍵學說和雜化軌道理論。1954年由於他在化學鍵本質研究和用化學鍵理論闡明物質結構方面的重大貢獻而榮獲了諾貝爾化學獎。此後,莫利肯運用量子力學方法,創立了原子軌道線性組合分子軌道的理論,闡明了分子的共價鍵本質和電子結構,1966年榮獲諾貝爾化學獎。另外,1952年福井謙一提出了前線軌道理論,用於研究分子動態化學反應。1965年R.B.Woodward,和R.Hoffman提出了分子軌道對稱守恆原理,用於解釋和預測一系列反應的難易程度和產物的立體構型。這些理論被認為是認識化學反應發展史上的一個里程碑,為此,福井謙一和Hoffman共獲1981年諾貝爾化學獎。1998年科恩因發展了電子密度泛函理論,以及波普爾因發展了量子化學計算方法而共獲了諾貝爾化學獎。
化學鍵和量子化學理論的發展足足花了半個世紀的時間,讓化學家由淺入深,認識分子的本質及其相互作用的基本原理,從而讓人們進入分子的理性設計的高層次領域,創造新的功能分子,如葯物設計、新材料設計等,這也是20世紀化學的一個重大突破。
(3)合成化學的發展
創造新物質是化學家的首要任務。100年來合成化學發展迅速,許多新技術被用於無機和有機化合物的合成,例如,超低溫合成、高溫合成、高壓合成、電解合成、光合成、聲合成、微波合成、等離子體合成、固相合成、仿生合成等等;發現和創造的新反應、新合成方法數不勝數。現在,幾乎所有的已知天然化合物以及化學家感興趣的具有特定功能的非天然化合物都能夠通過化學合成的方法來獲得。在人類已擁有的1900多萬種化合物中,絕大多數是化學家合成的,幾乎又創造出了一個新的自然界。合成化學為滿足人類對物質的需求作出了極為重要的貢獻。縱觀20世紀,合成化學領域共獲得10項諾貝爾化學獎。
1912年格林亞德因發明格氏試劑,開創了有機金屬在各種官能團反應中的新領域而獲得諾貝爾化學獎。1928年狄爾斯和阿爾德因發現雙烯合成反應而獲得1950年諾貝爾化學獎。1953年齊格勒和納塔發現了有機金屬催化烯烴定向聚合,實現了乙烯的常壓聚合而榮獲1963年諾貝爾化學獎。人工合成生物分子一直是有機合成化學的研究重點。從最早的甾體(A.Windaus,1928年諾貝爾化學獎)、抗壞血酸(W.N.Haworth, 1937年諾貝爾化學獎)、生物鹼(R.Robinson,1947年諾貝爾化學獎)到多肽(V..Vigneand,1955年諾貝爾化學獎)逐漸深入。到1965年有機合成大師Woodward由於其有機合成的獨創思維和高超技藝,先後合成了奎寧、膽固醇、可的松、葉綠素和利血平等一系列復雜有機化合物而榮獲諾貝爾化學獎。獲獎後他又提出了分子軌道對稱守恆原理,並合成了維生素B12等。

維生素B12

此外,Wilkinson和Fischer合成了過渡金屬二茂夾心式化合物,確定了這種特殊結構,對金屬有機化學和配位化學的發展起了重大推動作用,榮獲1973年諾貝爾化學獎。1979年Brown和Wittig因分別發展了有機硼和Wittig反應而共獲諾貝爾化學獎。1984年Merrifield因發明了固相多肽合成法對有機合成方法學和生命化學起了巨大推動作用而獲得諾貝爾化學獎。1990年Corey在大量天然產物的全合成工作中總結並提出了「逆合成分析法」,極大的促進了有機合成化學的發展,因此而獲得諾貝爾化學獎。
現代合成化學是經歷了近百年的努力研究、探索和積累才發展到今天可以合成像海葵毒素這樣復雜的分子(分子式為C129H223N3O54, 分子量為2689道爾頓,有64個不對稱碳和7個骨架內雙鍵, 異構體數目多達271個)。

海葵毒素

(4)高分子科學和材料
20世紀人類文明的標志之一是合成材料的出現。合成橡膠、合成塑料和合成纖維這三大合成高分子材料化學中具有突破性的成就,也是化學工業的驕傲。在此領域曾有3項諾貝爾化學獎。1920年H.Staudinger提出了高分子這個概念,創立了高分子鏈型學說,以後又建立了高分子粘度與分子量之間的定量關系,為此而獲得了1953年的諾貝爾化學獎。1953年Ziegler成功地在常溫下用(C2H5)3AlTiCl4作催化劑將乙烯聚合成聚乙烯,從而發現了配位聚合反應。1955年Natta將Ziegler催化劑改進為-TiCl3和烷基鋁體系,實現了丙烯的定向聚合,得到了高產率、高結晶度的全同構型的聚丙烯,使合成方法-聚合物結構-性能三者聯系起來,成為高分子化學發展史中一項里程碑。為此,Ziegler和Natta共獲了1963年諾貝爾化學獎。1974年Flory因在高分子性質方面的成就也獲得了諾貝爾化學獎。
(5)化學動力學與分子反應動態學
研究化學反應是如何進行的,揭示化學反應的歷程和研究物質的結構與其反應能力之間的關系,是控制化學反應過程的需要。在這一領域相繼獲得過3次諾貝爾化學獎。1956年Semenov和Hinchelwood在化學反應機理、反應速度和鏈式反應方面的開創性研究獲得了諾貝爾化學獎。另外,Eigen提出了研究發生在千分之一秒內的快速化學反應的方法和技術,Porter和Norrish提出和發展了閃光光解法技術用於研究發生在十億分之一秒內的快速化學反應,對快速反應動力學研究作出了重大貢獻,他們三人共獲了1967年諾貝爾化學獎。
分子反應動態學,亦稱態-態化學,從微觀層次出發,深入到原子、分子的結構和內部運動、分子間相互作用和碰撞過程來研究化學反應的速率和機理。李遠哲和Herschbach首先發明了獲得各種態信息的交叉分子束技術,並利用該技術F+H2的反應動力學,對化學反應的基本原理作出了重要貢獻,被稱為分子反應動力學發展中的里程碑,為此李遠哲、Herschbach和Polany共獲了1986年諾貝爾化學獎。1999年Zewail因利用飛秒光譜技術研究過渡態的成就獲諾貝爾化學獎。
(6)對現代生命科學和生物技術的重大貢獻
研究生命現象和生命過程、揭示生命的起源和本質是當代自然科學的重大研究課題。20世紀生命化學的崛起給古老的生物學注入了新的活力,人們在分子水平上向生命的奧秘打開了一個又一個通道。蛋白質、核酸、糖等生物大分子和激素、神經遞質、細胞因子等生物小分子是構成生命的基本物質。從20世紀初開始生物小分子(如糖、血紅素、葉綠素、維生素等)的化學結構與合成研究就多次獲得諾貝爾化學獎,這是化學向生命科學進軍的第一步。1955年Vigneand因首次合成多肽激素催產素和加壓素而榮獲了諾貝爾化學獎。1958年Sanger因對蛋白質特別是牛胰島素分子結構測定的貢獻而獲得諾貝爾化學獎。1953年J.D.Watson和H.C.Crick提出了DNA分子雙螺旋結構模型,這項重大成果對於生命科學具有劃時代的貢獻,它為分子生物學和生物工程的發展奠定了基礎,為整個生命科學帶來了一場深刻的革命。Watson和Crick因此而榮獲了1962年諾貝爾醫學獎。1960年J.C.Kendrew和M.F.Perutz利用X-射線衍射成功地測定了鯨肌紅蛋白和馬血紅蛋白的空間結構,揭示了蛋白質分子的肽鏈螺旋區和非螺旋區之間還存在三維空間的不同排布方式,闡明了二硫鍵在形成這種三維排布方式中所起的作用,為此,他們二人共獲了1962年諾貝爾化學獎。1965年我國化學家人工合成結晶牛胰島素獲得成功,標志著人類在揭示生命奧秘的歷程中邁進了一大步。此外,1980年P.Berg、F.Sanger和W.Gilbert因在DNA分裂和重組、DNA測序以及現代基因工程學方面的傑出貢獻而共獲諾貝爾化學獎。1982年A.Klug因發明「象重組「技術和揭示病毒和細胞內遺傳物質的結構而獲得諾貝爾化學獎。1984年R.B.Merrifield因發明多肽固相合成技術而榮獲諾貝爾化學獎。1989年T.Cech和S.Altman因發現核酶(Ribozyme)而獲得諾貝爾化學獎。1993年M.Smith因發明寡核苷酸定點誘變法以及K.B.Mullis因發明多聚酶鏈式反應技術對基因工程的貢獻而共獲諾貝爾化學獎。1997年J.Skou因發現了維持細胞中Na離子和K離子濃度平衡的酶及有關機理、P.Boyer和J.Walker因揭示能量分子ATP的形成過程而共獲諾貝爾化學獎。
20世紀化學與生命科學相結合產生了一系列在分子層次上研究生命問題的新學科,如生物化學、分子生物學、化學生物學、生物有機化學、生物無機化學、生物分析化學等。在研究生命現象的領域里,化學不僅提供了技術和方法,而且還提供了理論。
(7)對人類健康的貢獻
利用葯物治療疾病是人類文明的重要標志之一。20世紀初,由於對分子結構和葯理作用的深入研究,葯物化學迅速發展,並成為化學學科一個重要領域。1909年德國化學家艾里希合成出了治療梅毒的特效葯物胂凡納明。20世紀30年代以來化學家從染料出發,創造出了一系列磺胺葯,使許多細菌性傳染病特別是肺炎、流行性腦炎、細菌性痢疾等長期危害人類健康和生命的疾病得到控制。青黴素、鏈黴素、金黴素、氯黴素、頭孢菌素等類型抗生素的發明,為人類的健康做出了巨大貢獻。具不完全統計,20世紀化學家通過合成、半合成或從動植物、微生物中提取而得到的臨床有效的化學葯物超過2萬種,常用的就有1000餘種,而且這個數目還在快速增加。
(8)對國民經濟和人類日常生活的貢獻
化學在改善人類生活方面是最有成效、最實用的學科之一。利用化學反應和過程來製造產品的化學過程工業(包括化學工業、精細化工、石油化工、制葯工業、日用化工、橡膠工業、造紙工業、玻璃和建材工業、鋼鐵工業、紡織工業、皮革工業、飲食工業等)在發達國家中佔有最大的份額。這個數字在美國超過30%,而且還不包括諸如電子、汽車、農業等要用到化工產品的相關工業的產值。發達國家從事研究與開發的科技人員中,化學、化工專家佔一半左右。世界專利發明中有20%與化學有關。
人類之衣、食、住、行、用無不與化學所掌管之成百化學元素及其所組成之萬千化合物和無數的制劑、材料有關。房子是用水泥、玻璃、油漆等化學產品建造的,肥皂和牙膏是日用化學品,衣服是合成纖維製成並由合成染料上色的。飲用水必須經過化學檢驗以保證質量,食品則是由用化肥和農葯生產的糧食製成的。維生素和葯物也是由化學家合成的。交通工具更離不開化學。車輛的金屬部件和油漆顯然是化學品,車廂內的裝潢通常是特種塑料或經化學制劑處理過的皮革製品,汽車的輪胎是由合成橡膠製成的,燃油和潤滑油是含化學添加劑的石油化學產品,蓄電池是化學電源,尾氣排放系統中用來降低污染的催化轉化器裝有用鉑、銠和其他一些物質組成的催化劑,它可將汽車尾氣中的氧化氮、一氧化碳和未燃盡的碳氫化合物轉化成低毒害的物質。飛機則需要用質強量輕的鋁合金來製造,還需要特種塑料和特種燃油。書刊、報紙是用化學家所發明的油墨和經化學方法生產出的紙張印製而成的。攝影膠片是塗有感光化學品的塑料片,它們能被光所敏化,所以在暴光時和在用顯影葯劑沖洗時,它們就會發生特定的化學反應。彩電和電腦顯示器的顯象管是由玻璃和熒光材料製成的,這些材料在電子束轟擊時可發出不同顏色的光。VCD光碟是由特殊的信息存儲材料製成的。甚至參加體育活動時穿的跑步鞋、溜冰鞋、運動服、乒乓球、羽毛球排等也都離不開現代合成材料和塗料

E. 117年間,諾貝爾化學獎是怎樣改變世界的

諾貝爾獎創立於 1900 年,是以瑞典著名的化學家、硝化甘油炸葯的發明人阿爾弗雷德·貝恩哈德·諾貝爾(Alfred Bernhard Nobel)的部分遺產(3100 萬瑞典克朗)作為基金創立的,每年都頒發給在物理、化學、生理/醫學、和平、文學、經濟學這 6 個領域有突出貢獻的人。作為世界上最頂級的獎項之一,諾貝爾獎的證書可不是你想像中的大紅封皮的樣子,而是根據獲獎人的特點和成就、由專門的藝術家去商討、設計的。

辛格是一位美國猶太裔作家,被稱為 20 世紀的「短篇小說大師」。作為猶太人,他的作品都表達了對於本民族前途的憂慮,他的證書設計也體現了這一特點。證書中間是猶太人的大衛之星,下面是紐約;旁邊分別有 The Magician of Lublin、拉比拿著猶太人的 Torah Roll、The Slave 里的 Jacob、Satan in Goray、彌賽亞。

F. 為什麼說」化學改變世界」

化學是研究物質的性質、組成、結構、變化和應用的科學。世界是由物質組成的,化學則是人類用以認識和改造物質世界的主要方法和手段之一,它是一門歷史悠久而又富有活力的學科,它的成就是社會文明的重要標志。

化學是研究物質的性質、組成、結構、變化和應用的科學。世界是由物質組成的,化學則是人類用以認識和改造物質世界的主要方法和手段之一,它是一門歷史悠久而又富有活力的學科,它的成就是社會文明的重要標志。從開始用火的原始社會,到使用各種人造物質的現代社會,人類都在享用化學成果。人類的生活能夠不斷提高和改善,化學的貢獻在其中起了重要的作用。

化學是重要的基礎科學之一,在與物理學、生物學、自然地理學天文學等學科的相互滲透中,得到了迅速的發展,也推動了其他學科和技術的發展。例如,核酸化學的研究成果使今天的生物學從細胞水平提高到分子水平,建立了分子生物學;對地球、月球和其他星體的化學成分的分析,得出了元素分布的規律,發現了星際空間有簡單化和物的存在,為天體演化和現代宇宙學提供了實驗數據,還豐富了自然辯證法的內容。

閱讀全文

與化學如何改變世界相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:666
乙酸乙酯化學式怎麼算 瀏覽:1337
沈陽初中的數學是什麼版本的 瀏覽:1274
華為手機家人共享如何查看地理位置 瀏覽:959
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:812
數學c什麼意思是什麼意思是什麼 瀏覽:1328
中考初中地理如何補 瀏覽:1224
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:634
數學奧數卡怎麼辦 瀏覽:1305
如何回答地理是什麼 瀏覽:955
win7如何刪除電腦文件瀏覽歷史 瀏覽:986
大學物理實驗干什麼用的到 瀏覽:1408
二年級上冊數學框框怎麼填 瀏覽:1619
西安瑞禧生物科技有限公司怎麼樣 瀏覽:760
武大的分析化學怎麼樣 瀏覽:1176
ige電化學發光偏高怎麼辦 瀏覽:1265
學而思初中英語和語文怎麼樣 瀏覽:1561
下列哪個水飛薊素化學結構 瀏覽:1355
化學理學哪些專業好 瀏覽:1420
數學中的棱的意思是什麼 瀏覽:977