A. 如何從一個化合物的核磁共振氫譜讀取氫信號的化學位移
讀取核磁共振氫譜氫信號的化學位移,一是為了解析分子結構,一是為了發表文章報道使用。
為解析結構,只需要精確到小數點後2位即可,後面的四捨五入。
發表論文時,也基本上讀到小數點後2位即可。
只在解析高級譜圖時,才需要讀到小數點後4位,以便於計算使用。
對NMR譜圖的峰信號,不論信號峰的形狀是否規則、是否對稱,信號峰的化學位移值總是位於整個信號峰把基線進行添加後構成封閉圖形後的質量重心位置的橫坐標上。
為此,先對信號峰進行譜峰分組,再求解包括化學位移在內的所有譜圖信息參數。
對譜的每一組峰群進行分組,求解出每一個峰組的譜圖信息參數:峰形(寬窄),分裂峰數(單峰s,二重峰d, 三重峰t, 四重峰q,五重峰,六重峰,多重峰M)。峰形與圖譜公共基線所圍峰面積積分比,化學位移δ值,自旋-自旋耦合常數J值(在非NMR專業論文中,一般都簡述這些圖譜參數)相互不迭加的譜峰容易進行分組,相互迭加的一級譜或復雜譜,解析的過程也是不斷調整進行分組的過程。峰形一般較窄,解析時都是按較窄的峰形處理的。如果較寬,至少是底部較寬時,它的峰較寬的信息本身就代表一定的分子結構信息。
化學位移δ值,現在多使用相對值,即以某一個內標准物質,如四甲基硅等,以內標准物質的NMR信號化學位移δ值為0 ppm或0 Hz,測試物質的信號峰相對於內標物的化學位移δ值。如果NMR譜圖內標物信號不在0 位,需要校正之。
常規分裂峰數,s, d, t, q, 五重,六重,七重峰,此外還有dd(雙二重峰), dt(雙三重峰), dq(雙四重峰), ddd(雙雙二重峰), ddt(雙雙三重峰), dddd(雙雙雙二重峰)等峰形,每一種都代表一定的結構信息。有了峰形分組和譜峰組成,才容易求解δ值――峰形質量中心的橫坐標。求J值的過程也是不斷解析譜圖推導分子結構的過程。
單峰s,二重峰d, 三重峰t, 四重峰q,五重峰,六重峰,多重峰M,如果是左右對稱的峰形,化學位移δ值就在對稱峰形的中心峰上或中心處橫坐標上讀出。
對稱的dd(雙二重峰), dt(雙三重峰), dq(雙四重峰), ddd(雙雙二重峰), ddt(雙雙三重峰), dddd(雙雙雙二重峰)等峰形,化學位移δ值也是在對稱峰形的中心位置上讀出。
如果是高級譜圖,其中,一部分是一級譜圖的變形,即由於耦合關系、相互耦合的內側峰線高於外側峰線的,其化學位移δ值稍向峰高的那一側偏移,偏移得多少依據質量重心法則。另一部分的高級譜圖峰形較復雜,如要近似地讀出化學位移δ值也是如此即可。如果要想求解出精確的化學位移δ值,可以按照各種不同類型的高級譜圖自旋體系的成套的解析公式進行解析,這些高級譜圖的自旋類型的判斷、計算、解析的整個內容都是很好的可發表論文的實質內容和精華部分。
教科書中都有這方面的內容和專門知識,可去學習。
B. 化學位移的計算方法
待測物中加一標准物質(如TMS),分別測定待測物和標准物的吸收頻率nx和ns,以下式來表示化學位移d:化學位移(d)=(信號位置-TMS峰的位置)X106/核磁共振所用儀器的頻率MHz,用ppm單位表示化學位移與儀器的頻率無關。
C. 求助:什麼是化學位移影像化學位移的因素有哪些啊
化學位移是指不同化學環境中的氫原子因產生共振時吸收電磁波的頻率不同,在譜圖上出現的位置也不同,各類氫原子的這種差異被稱為化學位移。
影響化學位移的因素有:氫原子的種類和數目。
D. 化學位移的單位怎麼是ppm
化學位移的單位怎麼是ppm的原因是:
核磁共振中,化學位移本身的單位並不是ppm,而其單位是Hz,之所以單位為ppm,是因為我們常說的化學位移指的是化學相對位移。
打個比方,當使用200MHz的NMR時,某個位移值為200Hz,這時就採用相對位移,用200Hz去除以200MHz,得到的是百萬分之一,也就是1ppm;之所以這么表示是因為,位移值會隨著機器的不同而改變,例如剛才的例子,在400MHz的NMR下,位移值是400Hz,只是相對位移不變,仍然是1ppm。
化學位移的公式表示:
現採用相對數值表示法,即選用一個標准物質,以該標准物的共振吸收峰所處位置為零點,其它吸收峰的化學位移值根據這些吸收峰的位置與零點的距離來確定。
化學位移值普遍採用無量綱的δ值表示,其定義為:
(4)化學位移怎麼求擴展閱讀:
影響因素:
化學位移取決於核外電子雲密度,因此影響電子雲密度的各種因素都對化學位移有影響,影響最大的是電負性和各向異性效應。
1. 電負性
電負性大的原子(或基團)吸電子能力強,降低了氫核外圍的電子雲密度,屏蔽效應也就隨之降低,其共振吸收峰移向低場,化學位移會變大;反之,給電子基團可增加氫核外圍的電子雲密度,共振吸收峰移向高場,化學位移會變小。
2. 各向異性效應
當分子中的某些基團的電子雲排布不呈球形對稱時,它對鄰近的1H核產生一個各向異性的磁場,從而使某些空間位置上的核受屏蔽,而另一些空間位置上的核去屏蔽,這一現象稱為各向異性效應(anisotropic effect)。各向異性效應是由於成鍵電子的電子雲分布不均勻導致在外磁場中所產生的感應磁場的不均勻所引起的,如苯環上質子的化學位移移向低場,δ在7左右。
3. 氫鍵
氫鍵對羥基質子化學位移的影響與氫鍵的強弱及氫鍵的電子給予體的性質有關,在大多數情況下,氫鍵產生去屏蔽效應,使1H的δ值移向低場。
4. 溶劑效應
有時同一種樣品使用不同的溶劑也會使化學位移值發生變化,這稱為溶劑效應。活潑氫的溶劑效應比較明顯。能引起溶劑效應的因素很多,如N,N-二甲基甲醯胺在CDCl3中測定時,δαH>δβH,而在被測物中加入適量苯溶劑後可使δαH<δβH, 這是因為苯能與之形成復合物,而使兩種氫處於不同的屏蔽區所致。
5. 范德華效應
當取代基與共振核之間的距離小於范德華半徑時,取代基周圍的電子雲與共振核周圍的電子雲就互相排斥,共振核周圍的電子雲密度降低,使質子受到的屏蔽效應明顯下降,質子峰向低場移動,這稱為范德華效應。
E. 五重峰的化學位移怎麼計算
(A-B)*300。
d峰:將確定兩個化學位移(ppm)值相減,然後乘以相應的核磁儀器頻率(如300M核磁,乘以300即可),即(A-B)*300,化學位移標注中間值。t峰:(A-B)*核磁儀器頻率。化學位移標注中間B峰的。
F. 最常用的計算化學位移值的標准物質是什麼
帶有磁性的原子核在外磁場的作用下發生自旋能級分裂,當吸收外來電磁輻射時,將發生核自旋能級的躍遷,從而產生核磁共振現象。在有機化合物中,處在不同結構和位置上的各種氫核周圍的電子雲密度不同,導致共振頻率有差異,即產生共振吸收峰的位移,稱為化學位移
G. 最常用的計算化學位移值的標准物質是什麼
最常用的為TMS,即四甲基硅烷。
主要原因如下:(1)TMS化學性質不活潑, 與樣品之間不發生化學反應(2)TMS是一個對稱結構, 四個甲基的化學環境完全相同,不論是氫譜還是碳譜都只產生一個吸收峰;(3)Si的電負性小(1.9) ,TMS中氫核與碳核周圍的電子雲密度大,屏蔽效應大, 產生NMR信號所需的磁場強度比一般有機物中的氫核和碳核產生NMR信號所需的磁場強度大得多, 處於較高場,與絕大部分樣品信號不發生重疊和干擾;(4)TMS沸點低(27℃) , 容易去除, 有利於回收.
H. m峰的化學位移怎麼表示
用t表示。
化學位移採用相對數值t表示:以某一標准樣品的共振峰為原點,測出樣品各峰與原點的距離。m峰是復雜峰,一般寫范圍。