⑴ 化學鍍的鍍鎳
主鹽:
化學鍍鎳溶液中的主鹽就是鎳鹽,一般採用氯化鎳或硫酸鎳,有時也採用氨基磺酸鎳、醋酸鎳等無機鹽。早期酸性鍍鎳液中多採用氯化鎳,但氯化鎳會增加鍍層的應力,現大多採用硫酸鎳。目前已有專利介紹採用次亞磷酸鎳作為鎳和次亞磷酸根的來源,一個優點是避免了硫酸根離子的存在,同時在補加鎳鹽時,能使鹼金屬離子的累積量達到最小值。但存在的問題是次亞磷酸鎳的溶解度有限,飽和時僅為35g/L。次亞磷酸鎳的制備也是一個問題,價格較高。如果次亞磷酸鎳的制備方法成熟以及溶解度問題能夠解決的話,這種鎳鹽將會有很好的前景。
還原劑:
化學鍍鎳的反應過程是一個自催化的氧化還原過程,鍍液中可應用的還原劑有次亞磷酸鈉、硼氫化鈉、烷基胺硼烷及肼等。在這些還原劑中以次亞磷酸鈉用的最多,這是因為其價格便宜,且鍍液容易控制,鍍層抗腐蝕性能好等優點。
絡合劑:
化學鍍鎳溶液中的絡合劑除了能控制可供反應的游離鎳離子的濃度外,還能抑制亞磷酸鎳的沉澱,提高鍍液的穩定性,延長鍍液的使用壽命。有的絡合劑還能起到緩沖劑和促進劑的作用,提高鍍液的沉積速度。化學鍍鎳的絡合劑一般含有羥基、羧基、氨基等,常用的絡合劑有檸檬酸鈉、酒石酸鈉等。
在鍍液配方中,絡合劑的量不僅取決於鎳離子的濃度,而且也取決於自身的化學結構。在鍍液中每一個鎳離子可與6個水分子微弱結合,當它們被羥基,羧基,氨基取代時,則形成一個穩定的鎳配位體。如果絡合劑含有一個以上的官能團,則通過氧和氮配位鍵可以生成一個鎳的閉環配合物。在含有0.1mol的鎳離子鍍液中,為了絡合所有的鎳離子,則需要含量大約0.3mol的雙配位體的絡合劑。當鍍液中無絡合劑時,鍍液使用幾個周期後,由於亞磷酸根聚集,濃度增大,產生亞磷酸鎳沉澱,鍍液加熱時呈現糊狀,加絡合劑後能夠大幅度提高亞磷酸鎳的沉澱點,即提高了鍍液對亞磷酸鎳的容忍量,延長了鍍液的使用壽命。
不同絡合劑對鍍層沉積速率、表面形狀、磷含量、耐腐蝕性等均有影響,因此選擇絡合劑不僅要使鍍液沉積速率快,而且要使鍍液穩定性好,使用壽命長,鍍層質量好。
緩沖劑:
由於在化學鍍鎳反應過程中,副產物氫離子的產生,導致鍍液pH值會下降。試驗表明,每消耗1mol的Ni2+ 同時生成3mol的H+,即就是在1L鍍液中,若消耗0.02mol的硫酸鎳就會生成0.06mol的H+。所以為了穩定鍍速和保證鍍層質量,鍍液必須具備緩沖能力。緩沖劑能有效的穩定鍍液的pH值,使鍍液的pH值維持在正常范圍內。一般能夠用作PH值緩沖劑的為強鹼弱酸鹽,如醋酸鈉、硼砂、焦磷酸鉀等。
穩定劑:
化學鍍鎳液是一個熱力學不穩定體系,常常在鍍件表面以外的地方發生還原反應,當鍍液中產生一些有催化效應的活性微粒——催化核心時,鍍液容易產生激烈的自催化反應,即自分解反應而產生大量鎳-磷黑色粉末,導致鍍液壽命終止,造成經濟損失。
在鍍液中加入一定量的吸附性強的無機或有機化合物,它們能優先吸附在微粒表面抑制催化反應從而穩定鍍液,使鎳離子的還原只發生在被鍍表面上。但必須注意的是,穩定劑是一種化學鍍鎳毒化劑,即負催化劑,穩定劑不能使用過量,過量後輕則降低鍍速,重則不再起鍍,因此使用必須慎重。
所有穩定劑都具有一定的催化毒性作用,並且會因過量使用而阻止沉積反應,同時也會影響鍍層的韌性和顏色,導致鍍層變脆而降低其防腐蝕性能。試驗證明,稀土也可以作為穩定劑,而且復合稀土的穩定性比單一稀土要好。
加速劑:
在化學鍍溶液中加入一些加速催化劑,能提高化學鍍鎳的沉積速率。加速劑的使用機理可以認為是還原劑次磷酸根中氧原子被外來的酸根取代形成配位化合物,導致分子中H和P原子之間鍵合變弱,使氫在被催化表面上更容易移動和吸附。也可以說促進劑能起活化次磷酸根離子的作用。常用的加速劑有丙二酸、丁二酸、氨基乙酸、丙酸、氟化鈉等。
其他添加劑:
在化學鍍鎳溶液中,有時鍍件表面上連續產生的氫氣泡會使底層產生條紋或麻點。加入一些表面活性劑有助於工件表面氣體的逸出,降低鍍層的孔隙率。常用的表面活性劑有十二烷基硫酸鹽、十二烷基磺酸鹽和正辛基硫酸鈉等。
稀土元素在電鍍液中可以改善鍍液的深鍍能力、分散能力和電流效率。研究表明,稀土元素在化學鍍中同樣對鍍液的鍍層性能有顯著改善。少量的稀土元素能加快化學沉積速率,提高鍍液穩定性,鍍層耐磨性和搞腐蝕性能。
化學鍍鎳磷合金鍍層,硬度可高達HV1000,相當HRC69,具有很高的耐磨性和耐腐蝕性,鍍層結合力好、厚度均勻。鍍速快,可達20μm/小時。
⑵ 化學鍍膜(鎳磷合金)的一些問題!
呵呵,只知道一點點皮毛,希望能起到拋磚引玉的作用。
化學鍍膜,要說關鍵,對鍍件的前處理算是比較重要,打磨、酸洗、除油等等,如果表層雜質多,鍍膜的質量就不好。鍍液濃度的配製也是關鍵,pH值,鍍液的濃度都能對鍍層的沉積速度及鍍層的含量造成影響,沉積速度過快則鍍層表層光潔度會差,另外化學鍍過程中溶液的濃度和pH值是不斷變化的,如果是工業化學鍍,在化學鍍過程中要注意保持鍍液的濃度。
第二個沒遇到過鍍液還要過濾的問題,可能是因為你們是工業大規模生產配製鍍液的水是直接用自來水,如果有沉澱可以考慮提前配製,長時間靜置後取上層清液,呵呵,隨便說說,我也沒經歷過,希望能有高手給你解答。
第三個問題非晶結構與磷元素含量有一定關系,一般認為當鍍層中磷的質量分數超過9% (wt%)時, 鎳磷鍍層為高磷鍍層,一般為非晶態合金, 具有高耐蝕、耐磨、可焊性、磁性屏蔽、高硬度、高強度、高導電性等優異的性能。但P含量太大會造成類金屬一類金屬原子間(即P與P之間)成鍵數目的增多,從而實際上導致金屬一類金屬間形成的鍵數n 減小,鍍層耐蝕性和晶化溫度又從極大值開始下降。鍍液中磷元素的含量以及溶液的pH值均能影響鍍層中磷元素含量,一般pH值越高鍍層中磷元素含量越低。
第四個問題,制三元合金的鍍液配製,跟二元合金一樣,只是在鍍液中多添加一種物質而已,是在鍍前添加的。配比可參考相關文獻,當然這些文獻都是實驗室成果,能否跟實際生產中所制產品一樣就不清楚了。你可以先用CNKI中國期刊網用關鍵字搜索相關文獻,記下你所需文獻的題目,作者,所在期刊的年份期號及頁碼,然後到小木蟲論壇或者是其他學術論壇請人幫你下文獻。
⑶ 化學鍍鎳配方
化學鍍鎳鍍液的配方為: NiSO4•7H2O:20g/l,NaH2PO2•H2O:30g/l,Na3C6H5O7•2H2O:10g/l,NH4Cl:30g/l;pH值:8.5~9.5(濃氨水調節)。
工藝流程:除油-活化-空鍍-上砂-去浮砂-加厚鍍-鍍表面層。
化學鍍鎳溶液分為酸性和鹼性兩種,在酸性鍍液中生成的是高磷非磁性鍍層(酸性條件下的化學鍍鎳溫度一般為85~95℃),而在鹼性鍍液中生成的是低磷磁性鍍層,適合用於吸波材料。鹼性化學鍍鎳溶液具有非常好的均鍍能力,鍍層結合力高。
工藝流程中除油一般用含有氫氧化鈉、碳酸鈉、磷酸三鈉的溶液中電解處理;活化一般在鹽酸或硫酸中進行,對於不銹鋼基體,還要作預鍍處理。
(3)化學鎳金鈀的上鍍率是多少擴展閱讀:
化學鍍鎳的原理
在催化劑Fe的催化作用下,溶液中的次磷酸根在催化表面催化脫氫,形成活性氫化物,並被氧化成亞磷酸根;活性氫化物與溶液中的鎳離子進行還原反應而沉積鎳,其本身氧化成氫氣。即:
2H2PO2-+2H2O+Ni2+→Ni0+H2↑+4H++2HPO32-。
與此同時,溶液中的部分次磷酸根被氫化物還原成單質磷進入鍍層。即:
H2PO2-+[H+](催化表面)→P+H2O+OH-,所形成的化學鍍層是NiP合金,呈非晶態簿片結構。
⑷ 化學鎳鈀金純度多少
900%。
化學鎳鈀金是印製線路板行業的一種重要的表面處理工藝,廣泛的應用於硬質線路板(PCB),柔性線路板(FPC),剛擾結合板及金屬基板等生產製程工藝中,同時也是未來印製線路板行業表面處理的一個重要發展趨勢。1.印製線路板表面處理的種類。印製線路板是所有電子產品的基礎,涉及到通信、照明、航空、航天、交通、家電、軍事、醫療設備等多個領域,因此印製線路板行業的發展關繫到整個電子行業的發展速度。而在印製線路板製造過程工藝中,表面處理是其中最重要的一環,目前市場上較為成熟的表面處理工藝包括噴錫(熱風整平工藝)、沉錫、沉銀、OSP(有機保護膜)、電鍍硬金/水金、電鍍鎳金、化學鎳金和化學鎳鈀金8種。每一種工藝在其用途、加工難度以及成本控制等方面都有一定的優勢和劣勢。
⑸ 化學鎳金的覆銅板的鍍金層多少厚
這個 沒有 規定得 要看你要 多厚
⑹ 化學鎳金的工藝控制
1 除油缸
一般情況﹐PCB沉鎳金採用酸性除油劑來處理制板﹐其作用在於去除銅面之輕度油脂及氧化物﹐達到銅面清潔及增加潤濕效果的目的。它應當具備不傷Soider Mask(綠油)﹐低泡型易水洗的特點。
除油缸之後通常為二級市水洗﹐如果水壓不穩定或經常變化﹐則將逆流水洗設計為三及市水洗更佳。
2 微蝕缸
微蝕的目的在於清潔銅面氧化及前工序遺留殘渣﹐保持銅面新鮮及增加化學鎳層的密著性﹐常用微蝕液為酸性過硫酸鈉溶液。
Na2S2O8﹕80~120g/L
硫酸﹕20~50ml/L
沉鎳金生產也有使用硫酸雙氧水或酸性過硫酸鉀微蝕液來進行的。
由於銅離子對微蝕速率影響較大﹐通常須將銅離子的濃度控制有5~25g/L﹐以保證微蝕速率處於0.5~1.5μm﹐生產過程中﹐換缸時往往保留1/5~1/3缸母液(舊液)﹐以保持一定的銅離子濃度﹐也有使用少量氯離子加強微蝕效果。
另外﹐由於帶出的微蝕殘液﹐會導致銅面在水
洗過程中迅速氧化﹐所以微蝕後水質和流量以及浸泡時間都須特別考慮。否則﹐預浸缸會產生太多的銅離子﹐繼而影響鈀缸壽命。所以﹐在條件允許的情況下(有足夠的排缸)﹐微蝕後二級逆流水洗之後﹐再加入5%左右的硫酸浸洗﹐經二級逆流水洗之後進入預浸缸。
3 預浸缸
預浸缸在製程中沒有特別的作用﹐只是維持活化缸的酸度以及使銅面在新鮮狀態(無氧化物)下﹐進入活化缸。
理想的預浸缸除了Pd之外﹐其它濃度與活化缸一致。實際上﹐一般硫酸鈀活化系列採用硫酸作預浸劑﹐鹽酸把鈀活化系列採用鹽酸作預浸劑﹐也有使用銨鹽作預浸劑(PH值另外調節)。否則﹐活化製程失去保護會造成鈀離子活化液局部水解沉澱。
4 活化缸
活化的作用是在銅面析出一層鈀﹐作為化學鎳起始反應之催化晶核。其形成過程則為Pd與Cu的化學置換反應。
從置換反應來看﹐Pd與Cu的反應速度會越來越慢﹐當Pd與Cu完全覆蓋後(不考慮浸鍍的疏孔性)﹐置換反應即會停止﹐但實際生產中﹐人們不可能也不必要將銅面徹底活化(將銅面完全覆蓋)。從成本上講﹐這會使Pd的消耗大幅大升。更重要的是﹐這容易造成滲鍍等嚴重品質問題。
由於Pd的本身特性﹐活化缸存在著不穩定這一因素﹐槽液中會產生細微的(5m濾芯根本不可能將其過濾)鈀顆粒﹐這些顆粒不但會沉積在PCB的Pad位上﹐而且會沉積在基材﹑綠油以及缸壁上。當其積累到一定程度﹐就有可能造成PCB滲鍍以及缸壁發黑等現象。
影響鈀缸穩定性的主要原因除了葯水系列不同之外﹐鈀缸控制溫度和鈀離子濃度則是首要考慮的問題。溫度越低﹐鈀離子濃度越低﹐越有利於鈀缸的控制。但不能太低﹐否則會影響活化效果﹐引起漏鍍發生。
通常情況下﹐鈀缸溫度設定在20~30℃﹐其控制范圍應在±1℃﹐而鈀離子濃度則控制在20~40ppm﹐至於活化效果﹐則按需要選取適當的時間。
當槽壁及槽底出現灰黑色的沉積物﹐則需硝槽處理。其過程為﹕
加入1﹕1硝酸﹐啟動循環泵2小時以上或直到槽壁灰黑色沉積物完全除去為止。適當時可考慮加熱﹐但不可超過50℃﹐以免空氣污染。
另外﹐也有人認為活化帶出的鈀離子殘液在水洗過程中會造成水解﹐從而吸附在基材上引起滲鍍﹐所以﹐應在活化逆流水洗之後﹐多加硫酸或鹽酸的後浸及逆流水洗的製程。
事實上﹐正常情況下﹐活化帶出的鈀離子殘液體﹐在二級逆流水洗過程中可以被洗干凈。吸附在基材上的微量元素﹐在鎳缸中不足以導致滲鍍的出現。另一方面﹐如果說不正常因素導致基材吸附大量活化殘液﹐並不是硫酸或鹽酸能將其洗去﹐只能從根源去調整鈀缸或鎳缸。增加後浸及逆流水洗﹐其作用只是避免水中Pd含量太多而影響鎳缸。
需要留意的是﹐水洗缸中少量的Pd帶入鎳缸﹐並不會對鎳缸造成太大的影響﹐所以不必太在意活化後水洗時間太短﹐一般情況下﹐二級水洗總時間控制在1~3min為佳。尤其重要的是﹐活化後水洗不可使用超聲波裝置﹐否則﹐不但導致大面積漏鍍﹐而且滲鍍問題依然存在。
5 沉鎳缸
化學沉鎳是通過Pd的催化作用下﹐NaH2PO2水解生成原子態H﹐同時H原子在Pd催化條件下﹐將鎳離子還原為單質鎳而沉積在裸銅面上。
作為化學沉積的金屬鎳﹐其本身也具備催化能力。由於其催化能力劣於鈀晶體﹐所以反應初期主要是鈀的催化作用在進行。當鎳的沉積將鈀晶體完全覆蓋時﹐如果鎳缸活性不足﹐化學沉積就會停止﹐於是漏鍍問題就產生了。這種滲鍍與鎳缸活性嚴重不足所產生的漏鍍不同﹐前者因已沉積大約20μ的薄鎳﹐因而漏鍍Pad位在沉金後呈現白色粗糙金面﹐而後者根本無化學鎳的沉積﹐外觀至發黑的銅色。
從化學鎳沉積的反應看出﹐在金屬沉積的同時﹐伴隨著單質磷的析出。而且隨著PH值的升高﹐鎳的沉積速度加快的同時﹐磷的析出速度減慢﹐結果則是鎳磷合金的P含量降低。反之﹐隨著PH值的降低﹐鎳磷含金的P含量升高。
化學鎳沉積中﹐磷含量一般在7~11%之間變化。鎳磷合金的抗蝕性能優於電鍍鎳﹐其硬度也比電鍍鎳高。
在化學沉鎳的酸性鍍液中﹐當PH<3時﹐化學鎳沉積的反應就會停止﹐而當PH>6時﹐鍍液很容易產生Ni(OH)2沉澱。所以一般情況﹐生產中PH值控制在4.5~5.2之間。由於鎳沉積過程產生氫離子(每個鎳原子沉積的同時釋放4個氫離子)﹐所以生產過程中PH的變化是很快的﹐必須不斷添補鹼性葯液來維持PH值的平衡。
通常情況下﹐氯水和氫氧化鈉都可以用於生產維持PH值的控制﹐兩者在自動補葯方面差別不大﹐但在手動補葯時就應特別關注。加入氨水時﹐可以觀察到藍色鎳氨絡離子出現﹐隨即擴散時藍色消失﹐說明氨水對化學鎳是良好的PH調整劑。在加入氫氧化鈉溶液時﹐槽液立即出現白色氫氧化鎳沉澱粉末析出﹐隨著葯水擴散﹐白色粉末在槽液的酸性環境下緩慢溶解。所以﹐當使用氫氧化鈉溶液作為化學鍍的PH調整劑時﹐其配製濃度不能太高﹐加葯時應緩慢加入。否則會產生絮狀粉末﹐當溶解過程未徹底完成前﹐絮狀粉末就會出現鎳的沉積﹐必須將槽液過濾干凈後﹐才可以重新開始生產。
在化學鎳沉積的同時﹐會產生亞磷酸鹽(HPO3)的副產物﹐隨著生產的進行﹐亞磷酸鹽濃度會越來越高﹐於是反應速度受生成物濃度的長高而抑制﹐所以鎳缸壽命末期與初期的沉積速度相差1/3則為正常現象。但此先天不足可採用調整反應物濃度方式予以彌補﹐開缸初期Ni濃度控制在4.60g/L﹐隨著MTO的增加Ni濃度控制值隨之提高﹐直至5.0g/L停止。以維持析出速度及磷含量的穩定﹐以確保鍍層品質。
影響鎳缸活性最重要的因素是穩定劑的含量﹐常用的穩定劑是Pb(CH3COO)2或硫脲﹐也有兩種同時使用的。穩定劑的作用是控制化學沉鎳的選擇性﹐適量的穩定劑可以使活化後的銅面發生良好的鎳沉積﹐而基材或綠油部分則不產生化學沉積。當穩定劑含量偏低時﹐化學沉鎳的選擇性變差﹐PCB表面稍有活性的部分都發生鎳沉積﹐於是滲鍍問題就發生了。當穩定劑含量偏高時﹐化學沉積的選擇性太強﹐PCB漏銅面只有活化效果很好的銅位才發生鎳沉積﹐於是部分Pad位出現漏鍍的現象。
鍍覆PCB的裝載量(以裸銅面積計)應適中﹐以0.2~0.5dm/L為宜。負載太大會導致鎳缸活性逐漸升高﹐甚至導致反應失控﹔負載太低會導致鎳缸活性逐漸降低﹐造成漏鍍問題。在批量生產過程中﹐負載應盡可能保持一致﹐避免空缸或負載波動太大的現象。否則﹐控制鎳缸活性的各參數范圍就會變得很窄﹐很容易導致品質問題發生。
鍍液應連續過濾﹐以除去溶液中的固體雜質。鍍液加熱時﹐必須要有空氣攪拌和連續循環系統﹐使被加熱的鍍液迅速傳播。當槽內壁沉積鎳層時﹐應該及時倒缸(將葯液移至另一備用缸中進行生產)﹐然後用25%~50%(V/V)的硝槽進行褪除﹐適當時可考慮加熱,但不可超過50℃。
至於鎳缸的操作控制﹐在溫度方面﹐不同系列沉鎳葯水其控制范圍不同。一般情況下﹐鎳缸操作范圍86±5℃﹐有的葯水則控制在81±5℃。在生產中﹐具體設定根據試板結果來定﹐不同型號的制板﹐有可能操作溫度不同。通常一個制板的良品操作范圍只有±2℃﹐個別制板也有可能小於±1℃。在濃度控制方面﹐採用對Ni的控制來調節其它組分的含量﹐當Ni濃度低於設定值時﹐自動補葯器開始添加一定數量的葯水來彌補所消耗的Ni﹐而其它組分則依據Ni添補量按比例同時添加。
鎳層的厚度與鍍鎳時間呈線性關系。一般情況下﹐200μ鎳層厚度需鍍鎳時間28min﹐150μ鎳層網路需鍍鎳時間21min左右。由於不同的制板所需的活性不同﹐為減輕鎳缸控制的壓力(即增大鎳缸各參數的控制范圍)﹐可以考慮採用不同的活化時間﹐例如正常生產Pd缸有一個時間﹐容易滲鍍的制板另設定活化時間。這樣一來﹐則可以組合成六個程序來進行生產。需要留意的是﹐對於多程序生產﹐應當遵循一個基本原則﹐就是所有程序飛巴的起始位置必須保持一致﹐否則連續生產中切換程序容易造成過多的麻煩。
鎳缸的循環量一般設計在5~10turn over(每小時)﹐布袋式過濾應優先選擇考慮。搖擺通常都是前後擺動設計﹐但對於laser盲孔板﹐鎳缸和金缸設計為上下振動為佳。
6 沉金缸
置換反應形式的浸金薄層﹐通常30分鍾可達到極限厚度。由於鍍液Au的含量很低﹐一般為1~2g/L﹐溶液的擴散速度影響到大面積Pad位與小面積Pad位沉積厚度的差異。一般來說﹐獨立位小Pad位要比大面積Pad位的金厚度高100%也屬正常現象。
對於PCB的沉金﹐其金面厚度也會因內層分布而相互影響﹐其個別Pad位也會出較大的差異。
通常情況下﹐沉金缸的浸鍍時間設定在7~11分鍾﹐操作溫度一般在80~90℃﹐可以根據客戶的金厚要求﹐通過調節溫度來控制金厚。需要留意的是﹐金缸容積越大越好﹐不但其Au濃度變化小而有利於金厚控制﹐而且可以延長換缸周期。
為了節省成本﹐金缸之後需加裝回收水洗﹐同時也可減輕對環境的污染。回收缸之後﹐一般都是逆流水洗。
⑺ 化學鍍鎳的基本信息
化學鍍又稱為無電解鍍(Electroless plating),也可以稱為自催化電鍍(Autocatalytic plating)[1]。具體過程是指:在一定條件下,水溶液中的金屬離子被還原劑還原,並且沉澱到固態基體表面上的過程。ASTM B374(ASTM,美國材料與試驗協會)中定義為Autocatalytic plating is 「deposition of a metallic coating by a controlled chemical rection that is catalyzed by the metal or alloy being deposited」。這一過程與置換鍍不同,其鍍層是可以不斷增厚的[2],且施鍍金屬本身也具有催化能力。
⑻ 什麼是化學鍍鎳金
化學鍍鎳金是在高密度和微細線路板上為了取代熱風整平而開發的新工藝。這類小型或微型化的線路板如果採用熱風整平工藝,將會將小孔和微細線路全部填死而導致報廢,但是這類高密度的小型板對導通和抗腐蝕的要求又很高,這樣就只能採用化學鍍鎳後再化學鍍金的方法,在線路的表面形成化學鍍金層。現在的手機線路板或各種小型、微型線路板都是採用這種方法。
⑼ 提一個有關 化學鎳金(ENIG)鍍層厚度的問題。
當然要先鍍通孔達到要求的銅厚,目的要倒通. 化鎳金後工序需求所做的; 有的要SMT,有的要Gold Bonding ..., 大都為局部鍍.
⑽ 化學鎳金的介紹
Electroless Nickel/Immersion Gold,簡寫為ENIG,又稱化鎳金、沉鎳金或者無電鎳金,化學鎳金是通過化學反應在銅的表面置換鈀再在鈀核的基礎上化學鍍上一層鎳磷合金層,然後再通過置換反應在鎳的表面鍍上一層金。目前化鎳金的沉金有置換和半置換半還原混合建浴兩種工藝。