導航:首頁 > 化學知識 > 高分子化學都包括哪些

高分子化學都包括哪些

發布時間:2022-11-04 03:38:25

① 高中化學學到的高分子化合物有哪些

常見的有纖維素,澱粉,天然橡膠等
意思就是屬於高分子化合物,但是天然產的
不是人工製造出來的

② 高分子化合物有哪些

高分子化合物(macromolecular compound):所謂高分子化合物,是指那些由眾多原子或原子團主要以共價鍵結合而成的相對分子量在一萬以上的化合物。
由千百個原子彼此以共價鍵結合形成相對分子質量特別大、具有重復結構單元的化合物。(可分為無機高分子化合物和有機高分子化合物)
是由一類相對分子質量很高的分子聚集而成的化合物,也稱為高分子、大分子等。大多數高分子的相對分子質量在一萬到百萬之間,其分子鏈是由許多簡單的結構單元通過共價鍵重復連接而成。一般把相對分子質量高於10000的分子稱為高分子。高分子通常由10^3~10^5個原子以共價鍵連接而成。由於高分子多是由小分子通過聚合反應而製得的,因此也常被稱為聚合物或高聚物,用於聚合的小分子則被稱為「單體」。
舉例:纖維素、蛋白質、蠶絲、橡膠、澱粉等天然高分子化合物,以及以高聚物為基礎的合成材料,如各種塑料,合成橡膠,合成纖維、塗料與粘接劑等。

③ 常見的高分子化合物有哪些

塑料(聚苯乙烯、聚氯乙烯、聚四氟乙烯、聚丙烯、聚乙烯)。

橡膠(氟橡膠、有機硅橡膠、天然橡膠、丁腈橡膠)。

合成纖維(氨綸、腈綸、聚酯纖維、維尼綸)。

塑料的主要成分是樹脂。樹脂是指尚未和各種添加劑混合的高分子化合物。樹脂這一名詞最初是由動植物分泌出的脂質而得名,如松香、蟲膠等。樹脂約占塑料總重量的40%~100%。塑料的基本性能主要決定於樹脂的本性,但添加劑也起著重要作用。有些塑料基本上是由合成樹脂所組成,不含或少含添加劑,如有機玻璃、聚苯乙烯等。

橡膠是指具有可逆形變的高彈性聚合物材料,在室溫下富有彈性,在很小的外力作用下能產生較大形變,除去外力後能恢復原狀。橡膠屬於完全無定型聚合物,它的玻璃化轉變溫度(T g)低,分子量往往很大,大於幾十萬。

合成纖維是化學纖維的一種,是用合成高分子化合物做原料而製得的化學纖維的統稱。它以小分子的有機化合物為原料,經加聚反應或縮聚反應合成的線型有機高分子化合物,如聚丙烯腈、聚酯、聚醯胺等。

(3)高分子化學都包括哪些擴展閱讀:

高分子同低分子比較,具有如下幾個特點:

1、從相對分子質量和組成上看,高分子的相對分子質量很大,具有「多分散性」。大多數高分子都是由一種或幾種單體聚合而成。

2、從分子結構上看,高分子的分子結構基本上只有兩種,一種是線型結構,另一種是體型結構。線型結構的特徵是分子中的原子以共價鍵互相連接成一條很長的捲曲狀態的「鏈」(叫分子鏈)。體型結構的特徵是分子鏈與分子鏈之間還有許多共價鍵交聯起來,形成三度空間的網路結構。這兩種不同的結構,性能上有很大的差異。

3、從性能上看,高分子由於其相對分子質量很大,通常都處於固體或凝膠狀態,有較好的機械強度;又由於其分子是由共價鍵結合而成的,故有較好的絕緣性和耐腐蝕性能;由於其分子鏈很長,分子的長度與直徑之比大於一千,故有較好的可塑性和高彈性。高彈性是高聚物獨有的性能。此外,溶解性、熔融性、溶液的行為和結晶性等方面和低分子也有很大的差別。

④ 什麼是高分子化學

高分子化學是研究高分子化合物的合成、化學反應物理化學、物理、加工成型、應用等方面的一門新興的綜合性學科。合成高分子的歷史不過80年,所以高分子化學真正成為一門科學還不足六十年,但它的發展非常迅速。目前它的內容已超出化學范圍,因此,現在常用高分子科學這一名詞來更合邏輯地稱呼這門學科。狹義的高分子化學,則是指高分子合成和高分子化學反應。人類實際上從一開始即與高分子有密切關系,自然界的動植物包括人體本身,就是以高分子為主要成分而構成的,這些高分子早已被用作原料來製造生產工具和生活資料。

高分子化學是高分子科學的三大領域之一,它包括高分子化學、高分子物理和高分子工藝。高分子化學是研究高分子化合物的合成、化學反應、物理化學、物理、加工成型、應用等方面的一門新興的綜合性學科。
高分子化學包括塑料、合成纖維、合成橡膠三大領域。如今,建立了頗具規模的高分子合成工業,生產出五彩繽紛的塑料、美觀耐用的合成纖維、性能優異的合成橡膠。高分子合成材料,金屬材料、和無機非金屬材料並列構成材料世界的三大支柱。

分類:
縮合聚合
一個縮聚反應生成高分子取決於單體的官能度(單體反應基團的平均數),官能度至少要等於2,才能生成線性高分子,官能度大於2可能生成支鏈或交聯的高分子。縮聚反應在反應過程中要縮去某些小分子,經常是水,如聚酯及聚醯胺就是這類反應的典型產物。從化學平衡的角度看這些小分子要除去,分子量才能變得大,但是技術上很難達到。故縮聚物的分子量一般在2萬,而下面要提及的加聚物的分子量一般在20萬。實現縮聚的方法很多,如熔融聚合、溶液聚合、界面縮聚等。

加成聚合
。在反應動力學上與縮合聚合完全不同,加聚反應不生成任何小分子副產物。加聚反應的單體一般是烯烴類的化合物,在引發劑的引發下發生聚合,一般的引發劑為自由基型、離子型及金屬絡合物等。加聚反應一般分為3個階段:鏈引發、鏈增長、鏈終止階段。縮聚和加聚的方法可分別得到兩種類型的高分子,縮合型和加成型。值得提及的是縮聚反應亦可製取加聚型的高分子,反之亦然。無論是哪種類型的高分子,如果合成中包括一種單體,那麼得到的高分子稱之為均聚物。如果高分子是由兩種或兩種以上的單體所得,這樣的高分子稱之為共聚物。共聚物又分交替共聚物、無規共聚物、接枝及嵌段共聚物。共聚能改變高分子的性質,如力學性能和染色性能等。
一般說來高分子是穩定的,但在光、空氣、水等的環境中會逐漸發生斷鏈,致使聚合物的聚合度降低,通常稱之為降解。這些反應是破壞性的,但不能說是不需要的,如農用薄膜,報廢之後就很希望它們迅速地降解。另外一些高分子反應是很有用的,特別是當缺少某些單體,常通過處理預制的高分子所得到。尤其是功能高分子常涉及到的高分子反應。

⑤ 常見的高分子化合物有哪些

蛋白質,纖維素,澱粉.蠶絲、橡膠、澱粉.高分子化合物一般都是聚合物,也是混合物

一般把相對分子質量高於10000的分子稱為高分子。高分子通常由103~105個原子以共價鍵連接而成。由於高分子多是由小分子通過聚合反應而製得的,因此也常被稱為聚合物或高聚物,用於聚合的小分子則被稱為「單體」。
有機高分子化合物可以分為天然有機高分子化合物(如澱粉、纖維素、蛋白質天然橡膠等)和合成有機高分子化合物(如聚乙烯、聚氯乙烯等等),它們的相對分子質量可以從幾萬直到幾百萬或更大,但他們的化學組成和結構比較簡單,往往是由無數(n)結構小單元以重復的方式排列而成的

⑥ 高分子化合物有哪些

高分子化合物有纖維素、蛋白質、蠶絲、橡膠、澱粉等天然高分子化合物,以及以高聚物為基礎的合成材料,如各種塑料,合成橡膠,合成纖維、塗料與粘接劑等。

高分子化合物(又稱高聚物)的分子比低分子有機化合物的分子大得多。一般有機化合物的相對分子質量不超過1000,而高分子化合物的相對分子質量可高達104~106萬。由於高分子化合物的相對分子質量很大,所以在物理、化學和力學性能上與低分子化合物有很大差異。

高分子的特點:

1、從相對分子質量和組成上看,高分子的相對分子質量很大,具有「多分散性」。大多數高分子都是由一種或幾種單體聚合而成。

2、從分子結構上看,高分子的分子結構基本上只有兩種,一種是線型結構,另一種是體型結構。線型結構的特徵是分子中的原子以共價鍵互相連接成一條很長的捲曲狀態的「鏈」(叫分子鏈)。

體型結構的特徵是分子鏈與分子鏈之間還有許多共價鍵交聯起來,形成三度空間的網路結構。這兩種不同的結構,性能上有很大的差異。

3、從性能上看,高分子由於其相對分子質量很大,通常都處於固體或凝膠狀態,有較好的機械強度;又由於其分子是由共價鍵結合而成的,故有較好的絕緣性和耐腐蝕性能;由於其分子鏈很長,分子的長度與直徑之比大於一千,故有較好的可塑性和高彈性。

高彈性是高聚物獨有的性能。此外,溶解性、熔融性、溶液的行為和結晶性等方面和低分子也有很大的差別。

⑦ 高分子化合物有哪些高分子化合物介紹

1、高分子化合物有纖維素、澱粉、蛋白質、天然橡膠、聚芳醚、聚氯乙烯、聚醯亞胺、聚甲醛、有機玻璃、聚硯、聚碳酸酯等。
2、這些高分子化合物中除了有機高分子化合物之外,還有無機高分子化合物,比如其中的澱粉就是天然有機高分子化合物,另外還有合成有機高分子化合物,比如聚乙烯。

⑧ 高分子化合物的分類有哪些

高分子化合物的分類有哪些
高分子化合物,是指那些由眾多原子或原子團主要以共價鍵結合而成的相對分子量在一萬以上的化合物.
高分子化合物的種類很多,主要分類方法有如下四種:
1.按來源分類
可把高分子分成天然高分子和合成高分子兩大類.
2.按材料的性能分
可把高分子分成塑料、橡膠和纖維三大類.
塑料按其熱熔性能又可分為熱塑性塑料(如聚乙烯、聚氯乙烯等)和熱固性塑料(如酚醛樹脂、環氧樹脂
、不飽和聚酯樹脂等)兩大類.前者為線型結構的高分子,受熱時可以軟化和流動,可以反復多次塑化成型,次品和廢品可以回收利用,再加工成產品.後者為體型結構的高分子,一經成型便發生固化,不能再加熱軟化,不能反復加工成型,因此,次品和廢品沒有回收利用的價值.塑料的共同特點是有較好的機械強度(尤其是體形結構的高分子),作結構材料使用.
纖維又可分為天然纖維和化學纖維.後者又可分為人造纖維(如粘膠纖維、醋酸纖維等)和合成纖維(如尼龍、滌綸等).人造纖維是用天然高分子(如短棉絨、竹、木、毛發等)經化學加工處理、抽絲而成的.合成纖維是用低分子原料合成的.纖維的特點是能抽絲成型,有較好的強度和撓曲性能,作紡織材料使用.
橡膠包括天然膠和合成橡膠.橡膠的特點是具有良好的高彈性能,作彈性材料使用.
3.按用途分類
可分為通用高分子,工程材料高分子,功能高分子,仿生高分子,醫用高分子,高分子葯物,高分子試劑,高分子催化劑和生物高分子等.
塑料中的「四烯」(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纖維中的「四綸」(錦綸、滌綸、腈綸和維綸),橡膠中的「四膠」(丁苯橡膠、順丁橡膠、異戊橡膠和乙丙橡膠)都是用途很廣的高分子材料,為通用高分子.
工程塑料是指具有特種性能(如耐高溫、耐輻射等)的高分子材料.如聚甲醛、聚碳酸酯、聚硯、聚醯亞胺、聚芳醚、聚芳醯胺和含氟高分子、含硼高分子等都是較成熟的品種,已廣泛用作工程材料.
離子交換樹脂、感光性高分子、高分子試劑和高分子催化劑等都屬功能高分子.
醫用高分子、葯用高分子在醫葯上和生理衛生上都有特殊要求,也可以看作是功能高分子.
4.按主鏈結構
可分為碳鏈高分子、雜鏈高分子、元素有機高分子和無機高分子四大類.
碳鏈高分子的主鏈是由碳原子聯結而成的.
雜鏈高分子的主鏈除碳原子外,還含有氧、氮、硫等其他元素,如:如聚酯、聚醯胺、纖維素等.易水解.
元素有機高分子主鏈由碳和氧、氮、硫等以外其他元素的原子組成,如硅、氧、鋁、鈦、硼等元素,但側基是有機基團,如聚硅氧烷等.
無機高分子是主鏈和側鏈基團均由無機元素或基團構成的.天然無機高分子如雲母,水晶等,合成無機高分子如玻璃.
高分子化合物的系統命名比較復雜,實際上很少使用,習慣上天然高分子常用俗名.合成高分子則通常按制備方法及原料名稱來命名,如用加聚反應製得的高聚物,往往是在原料名稱前面加個「聚」字來命名.例如,氯乙烯的聚合物稱為聚氯乙烯,苯乙烯的聚合物稱為聚苯乙烯等.如用縮聚反應製得的高聚物,則大多數是在簡化後的原料名稱後面加上「樹脂」二字來命名.例如,酚醛樹脂、環氧樹脂等.加聚物在未製成製品前也常有「樹脂」來稱呼.例如,聚氯乙烯樹脂,聚乙烯樹脂等.此外,在商業上常給高分子物質以商品名稱.例如,聚己內醯胺纖維稱為尼龍—6,聚對苯二甲酸乙二酯纖維稱為滌綸,聚丙烯腈纖維稱為腈綸等

⑨ 高分子化合物有哪些

高分子化合物有澱粉、蛋白質、橡膠、纖維素、聚甲醛、聚碳酸酯、聚硯、聚醯亞胺、聚芳醚、聚芳醯胺等等。

高分子化合物,簡稱高分子,又叫大分子,一般指相對分子質量高達幾千到幾百萬的化合物,絕大多數高分子化合物是許多相對分子質量不同的同系物的混合物,因此高分子化合物的相對分子質量是平均相對分子量。

高分子化合物是由千百個原子以共價鍵相互連接而成的,雖然它們的相對分子質量很大,但都是以簡單的結構單元和重復的方式連接的。

分類

可分為通用高分子,工程材料高分子,功能高分子,仿生高分子,醫用高分子,高分子葯物,高分子試劑,高分子催化劑和生物高分子等。

塑料中的「四烯」(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纖維中的「四綸」(錦綸、滌綸、腈綸和維綸),橡膠中的「四膠」(丁苯橡膠、順丁橡膠、異戊橡膠和乙丙橡膠)都是用途很廣的高分子材料,為通用高分子。

工程塑料是指具有特種性能(如耐高溫、耐輻射等)的高分子材料。如聚甲醛、聚碳酸酯、聚硯、聚醯亞胺、聚芳醚、聚芳醯胺和含氟高分子、含硼高分子等都是較成熟的品種,已廣泛用作工程材料。

以上內容參考:網路-高分子化合物

⑩ 高分子化學的概述

在人類社會5000年發展的漫長歲月中,人們雖然天天與天然高分子材料打交道,但是對它們的科學本性卻一無所知,不知道棉、麻、絲、木材、澱粉等等都是天然高分子化合物。直到20世紀初期,經過施陶丁格等一些化學家們的共同努力,才徹底改變了這個局面。 高分子化學是高分子科學的三大領域之一,它包括高分子化學、高分子物理和高分子工藝。高分子化學是研究高分子化合物的合成、化學反應、物理化學、物理、加工成型、應用等方面的一門新興的綜合性學科。
高分子化學包括塑料、合成纖維、合成橡膠三大領域。如今,建立了頗具規模的高分子合成工業,生產出五彩繽紛的塑料、美觀耐用的合成纖維、性能優異的合成橡膠。高分子合成材料,金屬材料、和無機非金屬材料並列構成材料世界的三大支柱。 合成高分子的歷史不過90年,所以高分子化學真正成為一門科學今年整整80年,但它的發展非常迅速。目前它的內容已超出化學范圍,因此,現在常用高分子科學這一名詞來更合邏輯地稱呼這門學科。狹義的高分子化學,則是指高分子合成和高分子化學反應。
人類實際上從一開始即與高分子有密切關系,自然界的動植物包括人體本身,就是以高分子為主要成分而構成的,這些高分子早已被用作原料來製造生產工具和生活資料。人類的主要食物如澱粉、蛋白質等,也都是高分子。只是到了工業上大量合成高分子並得到重要應用以後,這些人工合成的化合物,才取得高分子化合物這個名稱。
後來,經過研究知道,人工合成的高分子和那些天然存在的高分子,在結構、性能等方面都具有共同性,因此,就都叫做高分子化合物。工業上或實驗室中合成出來的稱為合成高分子,一般所說的高分子,大都指合成高分子,天然存在的高分子簡稱天然高分子。
顧名思義,高分子的分子內含有非常多的原子,以化學鍵相連接,因而分子量都很大。但這還不是充足的條件,高分子的分子結構,還必須是以接合式樣相同的原子集團作為基本鏈節(或稱為重復單元)。許多基本鏈節重復地以化學鍵連接成為線型結構的巨大分子,稱為線型高分子。有時線型結構還可通過分枝、交聯、鑲嵌、環化,形成多種類型的高分子。其中以若干線型高分子,用若干鏈段連接在一起,成為巨大的交聯分子的稱為體型高分子。
從高分子的合成方法可以知道,合成高分子的化學反應,可以隨機地開始和停止。因此,合成高分子是長短、大小不同的高分子的混合物。與分子形狀、大小完全一樣的一般小分子化合物不同,高分子的分子量只是平均值,稱為平均分子量。
決定高分子性能的,不僅是平均分子量,還有分子量分布,即各種分子量的分子的分布情況。從其分布中可以看出,在這些長長短短的高分子的混合物中,是較長的多還是較短的多,或者中等長短的多。
高分子具有重復鏈節結構這一科學概念,是德國著名化學家H.施陶丁格
(Hermann Staudinger 1881—1965)在1922年提出的,但沒有得到當時化學界一些人的贊同。直到30年代初,通過了多次實踐,這一概念才被廣泛承認。正確概念一經成立,就使高分子有飛躍的發展。當時鏈式反應理論已經成熟,有機自由基化學也取得很大的成就。三者的結合,使高分子合成有了比較方便可行的方法。
實踐證明,許多烯類化合物,經過有機自由基的引發,就能進行鏈式反應,迅速地形成高分子。由20世紀30年代初期到40年代初期,許多現在的通用高分子品種,都已按此方法投入工業生產。在1935年卡羅瑟斯又發現用縮聚方法合成高分子,研製成功聚醯胺,人們稱為尼龍。後來,為了合理的加工和有效的應用,高分子結構和性能的研究工作逐漸開展,使高分子成為廣泛應用的材料。同時,一門新興的綜合性學科——高分子科學——從40年代下半期開始,蓬勃地發展起來。
高分子科學可以分為高分子化學(狹義的)、高分子物理和高分子工藝學三部分。高分子化學又分為高分子合成、高分子化學反應和高分子物理化學。高分子物理研究高聚物的聚集態結構和本體性能。高分子工藝學又分為高聚物加工成型和高聚物應用。
高分子雖然分子量很高,但是它們所具有的官能團,仍然與一般小分子有機化合物有一樣的反應性能。但其反應性能受兩種特有因素的影響:高分子是長鏈結構,這個長鏈是曲曲折折的蜷曲形。有規則的蜷曲(折疊)形成晶態,無規則的蜷曲形成非晶態;高分子的分子與分子堆砌在一起。有規則的堆砌形成規整的晶態排列;無規則的堆砌形成非晶態。規整結構中分子排列緊密,試劑不易侵入,官能團不易起反應;不規整結構中分子排列疏鬆,試劑容易侵入,官能團容易起反應。
天然高分子的化學轉化,早在19世紀就為人們所研究和利用。1845年舍恩拜因就發現纖維素可以硝化,成為硝酸纖維素。1865年許岑貝格爾把纖維素乙醯化成為醋酸纖維素。粘膠人造絲的生產也是通過纖維素的化學變化來實現的。
高分子的化學反應,有些是破壞性的,例如高分子光降解、高分子熱降解、高分子氧化等。它們使高分子材料老化,性能變壞,以致最後不能使用。但不少反應是有用的,甚至是重要的高分子合成方法,例如橡膠硫化成為具有彈性的橡皮;纖維素黃化,製成粘膠纖維;聚乙酸乙烯酯先水解成聚乙烯醇,再與甲醛縮合,紡成的纖維即維輪;高分子先轉化成自由基,再與另一單體形成接枝共聚物;兩種高分子鏈段用化學方法連接起來,成為嵌段共聚物。此外,還可以把某些元素或基團先接到高分子上去,再進行化學反應,反應後還可解脫,以完成某些分離、分解和合成工作,例如高子交換樹脂、固定化酶、多肽、某些激素甚至蛋白質的合成等等。
高分子鏈結構包括鏈節的化學結構,鏈節與鏈節連接的化學異構和立體化學異構、共聚物的鏈節序列、分子量及分子量分布,以及分子鏈的分支和交聯結構。
在適當情況下,這些結構相同的鏈節,正如許多相同的小分子可以整齊地排列起來成為晶體一樣,也可以局部折疊起來成為片狀結晶態,稱為片晶。片晶又可以堆砌成球狀,稱為球晶。在高分子的分子與分子之間,相同的鏈節也可排列成為片晶,片晶再堆砌成為球晶或其他晶態;那些未折疊起來的一部分分子是非晶態的。非晶態部分也有一定的結構。小分子化合物,要麼是結晶的,要麼是非晶態的;而高分子化合物,則可以一部分是晶態結構,另一部分是非晶態結構。
高分子鏈結構是一級結構;孤立高分子鏈,即稀溶液中高分子的形態,如無規線團、螺旋、雙螺旋、剛性棒或橢球等是二級結構;三級結構指高聚物分子聚集態結構,即分子鏈與分子鏈之間的堆砌。聚集態結構隨著加工成型方法的不同而有所不同。具有聚集態結構的高分子,稱為高聚物。
多數線型高分子,可以在相應的溶劑中溶解,形成溶液。高分子溶液是真溶液,而不是以前所認為的膠體溶液。高分子是長鏈結構,在流動時能相互阻滯,因此高分子溶液是粘稠的。一般情況下,分子鏈愈長,粘度愈大。當光束通過高分子溶液時,由於高分子比較大,可以發生光的散射,分子愈大,散射愈強。
高分子遠比溶劑分子重,在超高速離心下,高分子的移動比溶劑分子快,擴散比溶劑分子慢。分子量愈大,這些區別愈明顯。利用這些高分子溶液性能,可以測定高分子的分子量。研究高分子溶液,除了能測定分子量及其分布以外,還可從溶液的各種性質推測高分子的形態結構等。
高分子與小分子不同,具有強度、模量,以及粘彈、疲勞、鬆弛等力學性能,還具有透光、保溫、隔音、電阻等光學、熱學、聲學、電學等物理性能,由於具有這些性能,高聚物可作為多種材料應用。高聚物的結構與加工成型的方法有關。因此,要取得高聚物的優良性能,必須採用適當的加工成型方式,使它形成適當的結構。例如,成纖的高聚物,在紡絲以後必須在特定溫度下進行牽伸取向,才能達到較高強度。
高聚物作為材料使用,主要可分塑料、纖維和橡膠等,都需要加工成一定的形狀方可使用。此外,用做分離、分析材料的離子交換樹脂,在聚合過程中就可製成可使用的球形顆粒;用做油漆塗料的高聚物,只須溶在適當溶劑中,就可使用,無須加工成型。
高分子生產的迅速發展,說明了社會對它的需要量的迅速增加。高分子材料首先用作絕緣材料,用量至今還很大,特別是新型高絕緣材料。例如滌綸薄膜遠比雲母片優越;硅漆等用作電線絕紡漆,與紗包絕緣線不可相提並論。由於種種新型、優異的高分子介電材料的出現,電子工業以及計算機、遙感等新技術才能建立和發展起來。
高分子作為結構材料,在代替木材、金屬、陶瓷、玻璃等方面的應用日新月異。在農業,工業和日常用途上,它的優點很多,如質輕、不腐、不蝕、色彩絢麗等,用於機械零件、車船材料、工業管道容器、農用薄膜、包裝用瓶、盒、紙,建築用板材、管材、棒材等等,不但價廉物美,而且拼裝方便。還可用於醫療器械,家用器具,文化、體育、娛樂用品,兒童玩具等,大大豐富和美化了人們的生活。
合成纖維的優越性,如輕柔、不縐、強韌、挺括、不霉等,也為天然纖維棉、毛、絲、麻等所不及。尤其重要的是它們不與糧食爭地,一個工廠生產的合成纖維,可以相當上百萬畝農田所能生產的天然纖維。天然橡膠的生產,受地區的限制,產量也不能適應日益增長的要求。但合成橡膠不受這種限制,而且其各個品種各有比天然橡膠優良之處。
一般認為高分子材料強度不高、耐熱不好,這是從常見的塑料得到的印象。現在最強韌的材料,不是鋼,不是釷,不是鈹,而是一種用碳纖維和環氧樹脂復合而成的增強塑料。耐熱高分子,已經可以長期在300攝氏度下使用。
特別應當提起的是,在航天技術中,火箭或人造衛星殼體從外部空間回到大氣層時,速度高,表面溫度可達5000~10000攝氏度,沒有一種天然材料或金屬材料能經受這種高溫,但增強塑料可以勝任,因為它遇熱燃燒分解,放出大量揮發氣體,吸收大量熱能,使溫度不致過高。同時,塑料不傳熱,仍可保持殼體內部的人員和儀器正常工作和生活所需要的溫度。好的燒蝕材料,外層只損壞了3~4厘米,即可保全內部,完成回地任務。
不過高分子材料也有不少弱點,必須開展研究加以克服。比如易燃燒,大量使用高分子材料時,防火是一個大問題,必須使高分子不易燃燒,才能安全使用;易老化,不經久。用作建築材料,要求至少有幾十年的壽命;用於其他方面,也須有耐久性。大量使用高分子材料時,作為廢物扔掉的高分子垃圾,不被水溶解和風化,不受細菌腐蝕,如不處理就會越積越多,成為嚴重公害。必須設法使高分子材料在使用後能適時分解消失。

閱讀全文

與高分子化學都包括哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:663
乙酸乙酯化學式怎麼算 瀏覽:1334
沈陽初中的數學是什麼版本的 瀏覽:1271
華為手機家人共享如何查看地理位置 瀏覽:957
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:809
數學c什麼意思是什麼意思是什麼 瀏覽:1324
中考初中地理如何補 瀏覽:1221
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:631
數學奧數卡怎麼辦 瀏覽:1301
如何回答地理是什麼 瀏覽:953
win7如何刪除電腦文件瀏覽歷史 瀏覽:984
大學物理實驗干什麼用的到 瀏覽:1405
二年級上冊數學框框怎麼填 瀏覽:1615
西安瑞禧生物科技有限公司怎麼樣 瀏覽:756
武大的分析化學怎麼樣 瀏覽:1173
ige電化學發光偏高怎麼辦 瀏覽:1262
學而思初中英語和語文怎麼樣 瀏覽:1556
下列哪個水飛薊素化學結構 瀏覽:1351
化學理學哪些專業好 瀏覽:1417
數學中的棱的意思是什麼 瀏覽:974