導航:首頁 > 化學知識 > 分析化學中如何理解探針

分析化學中如何理解探針

發布時間:2022-11-13 06:55:17

⑴ 考研選專業:關於分析化學研究方向

我覺得啊,就分子探針吧。
因為我老婆就是使用的這個東西做博士論文的。
當然啊,我覺得你如果真的希望對自己專業負責點啊,建議你就對這兩個方面來做一篇綜述文章,給自己看,也給我看,當然順帶發表在網上大家看。如果你們學校願意也讓他發表去,但是堅決不要給什麼版費。
QQ734706288

⑵ 化學成分分析

彩色寶石化學成分復雜,微量元素種類多,對多數不具明顯內部包體及生長特徵的樣品,其微量元素含量及其組合特徵是產地鑒別最主要的「指紋性」特徵。現階段主要使用的無損及微損的元素分析方法有X射線熒光能譜儀(EDXRF)、激光燒蝕電感耦合質譜儀(LA-ICP-MS)、電子探針(EPMA)和二次離子質譜儀(SIMS)。各種方法儀器在性能、檢出限等方面對樣品的要求都不一樣。其中,二次離子質譜儀為高集成、高精度的超大型儀器,除能對樣品中的微量元素進行定量測試外,還能對樣品的部分同位素組成進行定量測試。

(一)X射線熒光能譜儀(EDXRF)

X射線熒光能譜儀(圖2-14)在珠寶玉石鑒定,特別是對樣品的主要化學成分及微量元素的定性和半定量測試方面均有廣泛應用,是眾多化學成分分析儀器中少有的完全無損的分析儀器。

X射線熒光能譜儀由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線)激發被測樣品,受激發的樣品中的每一種元素會放射出二次X射線,並且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性,探測系統測量這些放射出來的二次X射線的能量及數量,然後,儀器軟體將探測系統所收集到的信息轉換成樣品中各種元素的種類及含量。

圖2-17 尖晶石中Cr、Fe含量分布相圖

圖2-18 不同產地天然變石中兩種主要致色微量元素w(Fe2O3)/w(Cr2O3)二元系相圖

(三)電子探針(EPMA)

電子探針可以定量或定性地分析物質的化學成分、表面形貌及結構特徵,是一種有效、無損的化學成分分析方法。其基本原理是用聚焦很細的電子束照射所檢測樣品的表面,激發組成礦物元素的特徵X射線。用分光器或檢波器測定X射線熒光的波長,將其強度與標准樣品對比,或根據不同強度校正直接計數出組分含量。由於電子束照射面積很小,因而相應的X射線特徵譜線可反映出該微小區域內的元素種類及其含量。

為了便於選擇和確定分析點,電子探針的鏡筒內裝有與電子束同軸的光學顯微鏡觀察系統,以確保分析位置。目前電子探針可以檢測到絕大多數元素,包括以前不能檢測的輕量元素,這種微區定量的檢測手段在彩色寶石產地鑒定方面發揮著重要作用。但由於樣品製作有時需要磨製特定的探針片,且需要鍍導電膜,故其主要應用於珠寶玉石研究中,在實際的珠寶玉石鑒定方面使用較少。

(四)激光誘導擊穿光譜儀(LBS)

激光誘導擊穿光譜儀(LIBS)應用的是一種光譜探測技術。其基本原理為用高能激光產生的能量脈沖燒蝕樣品表面的微區,處於高溫下的燒蝕樣品的原子和離子均處於活躍性極強的激發態,因此會釋放特定波長的光譜,通過用高靈敏度的光學光譜儀收集燒蝕樣品表面的光譜,根據光譜測量得出樣品中的化學元素組成。21世紀初,當市場上出現鈹擴散處理的橙色藍寶石時,由於常規的X射線熒光光譜儀不能檢測出Be元素,而能檢測出Be元素的儀器,如激光燒蝕等離子體質譜儀和二次離子質譜儀太昂貴,瑞士寶石研究所研發了用於珠寶玉石鑒定用的LIBS儀器。

激光誘導擊穿光譜儀相對於其他測試Be元素的方法(如激光燒蝕等離子質譜儀LA-ICP-MS和次級離子質譜SIMS)而言,具有易於操作、體積較小等優越性。由於此儀器要用高能的激光器和CCD光譜儀,故價格比較昂貴,但其壽命較長,耐消耗,且靈敏度高,可以測試出很低含量的鈹,同時幾乎可以分析所有的化學元素,並且可根據譜峰的高低來對其含量進行比較,在珠寶玉石的鑒定、檢測和研究中發揮著越來越重要的作用。

該儀器的缺點是只能定性分析樣品的元素組成,無法實現其定量化。對寶玉石而言,LIBS技術仍是一種有損分析,會在其表面形成微小的熔坑,故應在可激發范圍內盡量降低激光能量,利用環境氣體來降低檢測限及提高譜線強度,以減少損耗。

(五)二次離子質譜儀(SIMS)

二次離子質譜儀(SIMS)採用質譜技術,利用離子束把待分析的材料從表面濺射出來,通過分析表面原子層以確定樣品表面元素組成和分子結構,其特點是高靈敏度和高解析度。

二次離子質譜儀的化學元素分析范圍很廣,由最小的氫至原子量很大的元素均可檢測,其高靈敏度體現在它可以檢測含量十億分之幾的微量元素(即檢測極可達10-9)。二次離子質譜儀不但可作表面及整體的元素分析,又可直接作影像觀察,其靈敏度及解析能力甚高。但是,SIMS要求一定的制樣和儀器准備時間,分析成本相對於LA-ICP-MS尤其是LIBS來說要高。此外,如果經過了精確校準,SIMS也可以確定固體物質中的主要和次要同位素組成。到目前為止,SIMS在寶石學上的應用主要是彩色寶石的產地特徵研究。

⑶ 對分析化學的認識

分析化學的認識

分析化學(Analytical Chemistry)的主要任務是鑒定物質的化學組成(元素、離子、官能團、或化合物)、測定物質的有關組分的含量、確定物質的結構(化學結構、晶體結 構、空間分布)和存在形態(價態、配位態、結晶態)及其與物質性質之間的關系等。主要是進行結構分析、形態分析、能態分析。
應用范圍
分析化學有極高的實用價值,對人類的物質文明做出了重要貢獻,廣泛地應用於地質普查、礦產勘探、冶金、化學工業、能源、農業、醫葯、臨床化驗、環境保護、商品檢驗、考古分析、法醫刑偵鑒定等領域。
2研究編輯1931年E.威森伯格提出的殘渣測定,只取10微克樣品,便屬於超微量分析。所用儀器從試管直到高級儀器(附自動化設備並用電子計算機程序控 制、記錄和儲存)。分析化學以化學基本理論和實驗技術為基礎,並吸收物理、生物、統計、電子計算機、自動化等方面的知識以充實本身的內容,從而解決科學、 技術所提出的各種分析問題。
研究問題
①物質中有哪些元素和(或)基團(定性分析);
②每種成分的數量或物質純度如何(定量分析);
③物質中原子彼此如何聯結而成分子和在空間如何排列(結構和立體分析)。
研究對象
從單質到復雜的混合物和大分子化合物,從無機物到有機物,從低分子量到高分子量(如10原子質量單位)。樣品可以是氣態、液態和固態。稱樣重量可由 100克以上以至毫克以下。
3范疇編輯當代分析化學將研究分為兩個范疇,一是分析的對象,一是分析的方法。<分析化學期刊>(Analytical Chemistry)每年在第12期會在兩個范疇輪流做一次回顧評述。

⑷ 分析化學名詞解釋

1. 返滴定法:先加入一定量過量的滴定劑,又稱第一標准溶液,使與試液中的物質或固體

進行反應,待反應定量完成後,再用另一個標准溶液,又稱第二標准溶液。

2. 酸效應曲線:配位滴定中,表示金屬離子EDTA配合物的lgkfM或lgY(H)與滴定允許的最小

PH值的關系曲線。

9. 組分效應:

10.基準物質:分析化學中用於直接配製標准溶液或標定滴定分析中操作溶液濃度的物質。

11. 區分效應:指分析化學中,能區分酸鹼強度的效應。

12. 伸縮振動:指原子沿鍵軸方向的伸長和縮短,振動時只有鍵長的變化而無鍵角的變化。

13.分配色譜法:固定相是液體,利用液體固定相對試樣中諸組分的溶解能力不同,即試樣中

諸組分在流動相與固定相中分配系數的差異,而實現試樣中諸組分分離的色

譜法。

14. 不對稱電位:如果玻璃膜電極兩側溶液的pH相同,則膜電位應等於零,但實際上仍有一

微小的電位差存在,這個電位差稱為不對稱電位。

15. 酸鹼指示劑:用於酸鹼滴定的指示劑,稱為酸鹼指示劑。

⑸ 分析化學的發展

古代人認識的元素,非金屬元素有碳和硫,金屬元素中有銅、銀、金、鐵、鉛、錫和汞。
分析化學這一名稱雖創自R.玻意耳,但其實踐應與化學工藝同樣古老。不能想像古代冶煉、釀造等工藝的高度發展,沒有簡單的鑒定、分析、製作過程的控制等手段。隨後在東、西方興起的煉丹術、煉金術可視為分析化學的前驅。
公元前3000年,埃及人已知稱量的技術。最早出現的分析用儀器當推等臂天平,它記載在《莎草紙卷》(公元前1300)上。巴比倫的祭司所保管的石制標准砝碼(約公元前2600)尚存於世。不過等臂天平用於分析,當在中世紀用於烤缽試金法(火試金法之一)中。
公元前4世紀,已知使用試金石以鑒定金的成色。
公元前3世紀,阿基米德在解決敘拉古王喜朗二世的金冕的純度問題時,即利用了金和銀密度之差,這是無傷損分析之先驅。
公元60年左右,老普林尼將五倍子浸液塗在莎草紙上,用以檢出硫酸銅的摻雜物鐵(Ⅲ),這是最早使用的有機試劑,也是最早的試紙。
1751年,J.T.埃勒爾·馮·布羅克豪森用同一方法檢出血渣(經灰化)中的含鐵量。 1663年,玻意耳報道了用植物色素作酸鹼指示劑。但真正的容量分析應歸功於法國J.-L.蓋-呂薩克。
1824年,他發表漂白粉中有效氯的測定,用磺化靛青作指示劑。隨後他用硫酸滴定草木灰,又用氯化鈉滴定硝酸銀。這三項工作分別代表氧化還原滴定法、酸鹼滴定法和沉澱滴定法。絡合滴定法創自J.von李比希,他用銀(Ⅰ)滴定氰離子。另一位對容量分析作出卓越貢獻的是德國K.F.莫爾,他設計的可盛強鹼溶液的滴定管至今仍在沿用。他推薦草酸作鹼量法的基準物質,硫酸亞鐵銨(也稱莫爾鹽)作氧化還原滴定法的基準物質。 最早的微量分析是化學顯微術,即在顯微鏡下觀察樣品或反應物的晶態、光學性質、顆粒尺寸和圓球直徑等。
17世紀中葉,R.胡克從事顯微鏡術的研究,並於1665年出版《顯微圖譜》。法國葯劑師F.A.H.德卡羅齊耶在1784年用顯微鏡以氯鉑酸鹽形式區別鉀、鈉。
1747年,德意志化學家A.S.馬格拉夫用顯微鏡證實蔗糖和甜菜糖實為同一物質;
1756年,用顯微鏡檢驗鉑族金屬。
1865年,A.黑爾維希著《毒物學中之顯微鏡》。
1877年,S.A.博里基著《以化學/顯微鏡法作礦物與岩石分析》,並使用氣體試劑(如氟化氫、氯)、氟硅酸和硫化銨與礦物及其切片作用。T.H.貝侖斯不僅從事無機物的晶體檢驗,還擴充到有機晶體。
1891年,O.萊爾曼提出熱顯微術,即在顯微鏡下觀察晶體遇熱時的變化。L.科夫勒及其夫人設計了兩種顯微鏡加熱台,便於研究葯物及有機化合物的鑒定。熱顯微術只需一粒晶體。後來又發展到電子顯微鏡,解析度可達1埃。
不用顯微鏡的最早的微量分析者應推德國J.W.德貝賴納。他從事濕法微量分析,還有吹管法和火焰反應,並發表了《微量化學實驗技術》一書。公認的近代微量分析奠基人是F.埃米希。他設計和改進微量化學天平,使其靈敏度達到微量化學分析的要求,改進和提出新的操作方法,實現毫克級無機樣品的測定,並證實納克級樣品測定的精確度不亞於毫克級測定。有機微量定量分析奠基人是F.普雷格爾,他曾從膽汁中離析一降解產物,其量尚不足作一次常量碳氫分析,在聽了埃米希於1909年所作的有關微量定量分析的講演並參觀其實驗室後,他決意將常量燃燒法改為微量法(樣品數毫克),並獲得成功;1917年出版《有機微量定量分析》一書,並在1923年獲諾貝爾化學獎。
常量操作如不適用於微量分析則需改進。例如,常量過濾是將沉澱定量移入濾紙錐中或過濾坩堝中。若用此法於微量沉澱過濾,則在原進行沉澱的燒杯壁所粘附的物質就不能再忽略不計了,所以必須改變辦法。微量過濾採用濾棒吸出母液,而留全部沉澱於容器中。容器可用25毫升瓷坩堝,它兼用作稱量器皿;還可在其內洗滌沉澱,然後再用濾棒吸出洗液。這樣既可避免沉澱損失,又可簡化操作手續。
無機化合物在濾紙上的行為在19世紀中已引起注意。德意志化學家F.F.龍格在1850年將染料混合液滴在吸墨紙上使之分離。更早些時候他用染有澱粉和碘化鉀溶液的濾紙或花布塊作漂白液的點滴試驗。他又用浸過硫酸鐵(Ⅲ)和銅(Ⅱ)溶液的紙,在其中部滴加黃血鹽,等每滴吸入後再加第二滴,因此獲得自行產生的美麗圖案。1861年出現C.F.舍恩拜因的毛細管分析,他將濾紙條浸入含數種無機鹽的水中,水攜帶「鹽類」沿紙條上升,以水升得最高,其他離子依其「遷移率」而分離成為連接的帶。這與「紙層析」極為相近。他的學生研究於「濾紙上分離有機化合物」獲得成功,能明顯而完全分離「有機染料」。
用濾紙或瓷板進行無機、有機物的檢出是普雷格爾的貢獻。方法簡單而易行,選擇性和靈敏度均高,點滴試驗屬微量分析范圍。所著《點滴試驗》和《專一、選擇和靈敏反應的化學》兩書,為從事分析者所必讀。1921年後奧地利F.法伊格爾系統地發展了點滴試驗法。
20世紀60年代,H.魏斯提出環爐技術。僅用微克量樣品置濾紙中心,繼用溶劑淋洗,而在濾紙外沿加熱以蒸發溶劑,遂分離為若干同心環。如離子無色可噴以靈敏的顯色劑或熒光劑。既能檢出,又能得半定量結果。 色譜法也稱層析法,基本上是分離方法。
1906年,俄國М.С.茨維特將綠葉提取汁加在碳酸鈣沉澱柱頂部,繼用純溶劑淋洗,從而分離了葉綠素。此項研究發表在德國《植物學》雜志上,故未能引起人們注意。
1931年,德國R.庫恩和E.萊德爾再次發現本法並顯示其效能,人們才從文獻中追溯到茨維特的研究和更早的有關研究,如1850年J.T.韋曾利用土壤柱進行分離;1893年L.里德用高嶺土柱分離無機鹽和有機鹽。四年後D.T.戴用漂白土分離石油。
氣體吸附層析始於20世紀30年代的P.舒夫坦和A.尤肯。40年代,德國Y.黑塞利用氣體吸附以分離揮發性有機酸。英國E.格盧考夫也用同一原理在1946年分離空氣中的氦和氖,並在1951年製成氣相色譜儀(見氣相色譜法)。第一台現代氣相色譜儀研製成功應歸功於E.克里默。
氣體分配層析法根據液液分配原理,由英國A.J.P.馬丁和R.L.M.辛格於1941年提出。由於此工作之重要,他們獲得1952年諾貝爾化學獎。M.J.E.戈萊提出用長毛細管柱,是另一創新。
色譜-質譜聯用法中將色譜法所得之淋出流體移入質譜儀,可使復雜的有機混合物在數小時內得到分離和鑒定,是最有效的分析方法之一。
液相色譜法包括液-液和液-固色譜,後兩個名稱之第一物態代表流動相,第二物態代表固定相。在大氣壓力下,液相色譜流速太低,因此須增加壓強。這方面的先驅工作是P.B.哈密頓在1960年用高壓液相色譜分離氨基酸。
1963年,J.C.吉丁斯指出,液相色譜法的柱效要趕上氣相色譜法,則前者填充物顆粒應小於後者顆粒甚多,因此需要大壓強,所用的泵應無脈沖。
1966年,R.詹特福特和T.H.高製成這種無脈沖泵。
1969年,J.J.柯克蘭改進填充物,使之具有規定的表面孔度,再將固定相(如正十六烷基)鍵合在載體上,使之能抗熱和抗溶劑分解。載體可用二氧化硅,鍵合通過Si-O-C或Si-C鍵。 薄層層析採用薄層硅膠等代替濾紙進行層析。由於硅膠顆粒均勻而細微,分離的速度和程度一般優於紙層析,分離無機物和有機物時與紙層析一樣有效。
荷蘭生物學家M.W.拜爾因克在1889年滴一滴鹽酸和硫酸的混合液於動物膠薄層中部,鹽酸擴散遠些,在硫酸環之外另成一環,相繼用硝酸銀和氯化鋇顯示這兩個環的存在。
9年後H.P.維伊斯曼用同樣方法證明麥芽的澱粉酶中實含兩種酶。
直至1956年聯邦德國E.施塔爾改善塗布方法和操作,採用細顆粒(0.5~5微米)硅膠等措施,才使該法得到廣泛使用。定量薄層層析始於J.G.基施納等(1954)。他們最先測定橙柑屬及其加工品中的聯苯(見薄層層析)。 希臘哲學家泰奧弗拉斯圖斯曾記錄各種岩石礦物及其他物質遇熱所發生的影響。法國H.-L.勒夏忒列和英國W.C.羅伯茨-奧斯汀同稱為差熱分析的鼻祖。
20世紀60年代,出現精細的差熱分析儀和M.J.奧尼爾提出的差示掃描量熱法,它能測定化合物的純度及其他參數,如熔點和玻璃化、聚合、熱降解、氧化等溫度(見熱分析)。
20世紀初,提出的熱重量法是研究物質,如鋼鐵、沉澱等遇熱時重量之變化。本多光太郎創制第一架熱天平,它最初只用於解決冶金方面的問題。將它用於分析方面的當推 C.杜瓦爾。他曾研究過 1000多種沉澱的熱行為。例如草酸鈣用高溫可灼燒為氧化鈣,也可在約550°C灼燒為碳酸鈣。二者作為稱量形式,則以後者為佳,因灼燒時既省能量,換算因子值較大(因此誤差較小),又免氧化鈣在稱量時吸潮。
電解時,銅(Ⅱ)在陰極還原而以單質(零價)析出,再進行稱量,應歸入重量法。此時可認為電子是沉澱劑。還有鉛(Ⅱ)在陽極氧化,以二氧化鉛形式附於陽極。前法在19世紀60年代分別由德意志C.盧科和美國J.W.吉布斯獨立提出。 19世紀初,用於無機重量分析的有機試劑只有草酸及其銨鹽和琥珀酸銨兩種。前者用於鈣、鎂分離和鈣的測定。後者用於沉澱三價鐵使它與二價金屬離子分離。
1885年,M.A.伊林斯基和G.von克諾雷提出1-亞硝基-2-萘酚作為鎳存在時鈷的沉澱劑,同時也是第一個螯合劑。至於陰離子測定,在20世紀初,W.米勒提出4,4-聯苯胺作為硫酸根的沉澱劑。
1950年,中國梁樹權等將有機試劑用於重量分析,測定鎢酸根。
1950年,M.布希引入4,5-二氫-1,4-二苯基-3,5-苯亞氨基-1,2,4-三氮雜茂(簡稱硝酸根試劑)作為硝酸根沉澱劑。1975年後,它又成為高錸酸根的良好沉澱劑。
1950年,Л.A.楚加耶夫合成了丁二肟,並觀察到它與鎳(Ⅱ)形成紅色沉澱。兩年後,聯邦德國O.E.布龍克把丁二肟試劑應用於鋼中鎳的測定。嗣後靈敏的和選擇性高的新有機試劑不斷出現。中國曾雲鶚等合成3-(2-胂酸基苯偶氮)-6-(2,6-二溴-4-氯苯偶氮)-4,5-二羥基-2,7-萘二磺酸,用此試劑時,稀土元素的摩爾吸光系數可以高達0.98~1.2×10升/(摩·厘米)。 它是基於被測物質的分子對光具有選擇性吸收的特性而建立起來的分析方法。包括比色分析法和紫外、可見分光光度法。測量某溶液對不同波長單色光的吸收程度,以波長為橫坐標,吸光度為縱坐標作圖,可得到吸收光譜。根據各種物質所有的特殊吸收光譜,可進行定性分析和定量分析。
比色法以日光為光源,靠目視比較顏色深淺。最早的記錄是1838年W.A.蘭帕迪烏斯在玻璃量筒中測定鈷礦中的鐵和鎳,用標准參比溶液與試樣溶液相比較。
1846年,A.雅克蘭提出根據銅氨溶液的藍色測定銅。隨後有T.J.赫羅帕思的硫氰酸根法測定鐵(1852);奈斯勒法測定氨;苯酚二磺酸法測定硝酸根(1864);過氧化氫法測定鈦(1870);亞甲基藍法測定硫化氫(1883);磷硅酸法測定二氧化硅(1898)。分光光度計使用單色光和光電倍增管,波長范圍為 220~1000納米,比目視范圍(400~700納米)更寬。
用光照射懸浮液,從頂部觀察,當視線與光線成直角時,稱為比霧法;如果視線與光線在一條直線上時,稱為比濁法。
18世紀50年代,G.J.馬爾德在原子量測定中,利用了目測上層液體中氯化銀懸浮液的亮度。隨後,J.-S.斯塔改用一標准懸浮液作參比。
1894年,美國T.W.理查茲設計出第一台比霧計。比霧法最初用於觀測原子量測定中母液中的氯(或溴)離子和銀離子濃度是否達到當量。隨後此法用於定量測定,其靈敏度很高,可測定一升水所含的3微克磷,或一升水所含的10微克丙酮。 紅外光譜是有機化學家鑒別未知化合物的有力手段。紅外光譜在20年代開始應用於汽油爆震研究,繼用於鑒定天然和合成橡膠以及其他有機化合物中的未知物和雜質。70 年代,在電子計算機蓬勃發展的基礎上,傅立葉變換紅外光譜 (FTIR) 實驗技術進入現代化學家的實驗室,成為結構分析的重要工具。遠紅外光譜(200~10厘米)和微波譜(10~0.1厘米)是研究分子旋轉的光譜法。
拉曼光譜(見拉曼光譜學是研究分子振動的另一種方法。早期拉曼光譜的信號太弱,使用困難,直至用激光作為單色光源後,才促進其在分析化學中的應用。拉曼光譜發展到現今已有採用傅立葉變換技術的FT-Raman光譜分析技術,共聚焦顯微拉曼光譜分析技術,表面增強拉曼效應分析技術等,在生物醫學分析、 文物分析、寶石鑒定、礦物分析等領域有重要的作用。 1672年,I.牛頓在暗室中用棱鏡分日光為七色,這就是原子發射光譜法的始祖。
1800年,F.W.赫歇耳發現紅外線。次年J.W.里特用氯化銀還原現象發現紫外區。又次年W.H.渥拉斯頓觀察到日光光譜的暗線。
1815年, J.von夫琅和費經過研究,命名暗線為夫琅和費線。文獻中稱鈉線為D線,也是夫琅和費規定的。R.W.本生發明了名為本生燈的煤氣燈,燈的火焰近於透明而不發光,便於光譜研究。
1859年,本生和他的同事物理學家G.R.基爾霍夫研究各元素在火焰中呈示的特徵發射和吸收光譜,並指出日光光譜中的夫琅和費線是原子吸收線,因為太陽的大氣中存在各種元素。他們用的儀器已具備現代分光鏡的要素。他們可稱為發射光譜法的創始人。 化學分析包括滴定分析和稱量分析,它是根據物質的化學性質來測定物質的組成及相對含量。
光譜學
質譜學
分光度和比色法
層析和電泳法
結晶學
顯微術
電化學分析
古典分析
雖說當代分析方法絕大部分為儀器分析,但有些儀器最初的設計目的,是為了簡化古典方法的不便,基本原理仍來自於古典分析。另外,樣品配置等前置處理,仍需要藉由古典分析手法的協助。以下舉一些古典分析方法:
滴定法
重量分析
無機定性分析 分析儀器:當代分析化學著重儀器分析,常用的分析儀器有幾大類,包括原子與分子光譜儀,電化學分析儀器,核磁共振,X光,以及質譜儀。儀器分析之外的分析化學方法,統稱為古典分析化學。
分析化學是化學的一個重要分支,它主要研究物質中有哪些元素或基團(定性分析);每種成分的數量或物質純度如何(定量分析);原子如何聯結成分子,以及在空間如何排列等等。
儀器分析的方法:它是根據物質的物理性質或物質的物理化學性質來測定物質的組成及相對含量。儀器分析根據測定的方法原理不同,可分為電化學分析、光學分析、色譜分析、其他分析法等4大類。如右圖。
主要分析儀器:
原子吸收光譜法(Atomic absorption spectros, AAS)
原子熒光光譜法(Atomic fluorescence spectros, AFS)
α質子-X射線光譜儀(Alpha particle X-ray spectrometer, APXS)
毛細管電泳分析儀(Capillary electrophoresis, CE)
色譜法(Chromatography)
比色法(Colorimetry)
循環伏安法(Cyclic Voltammetry, CV)
差示掃描量熱法(Differential scanning calorimetry, DSC)
電子順旋共振儀(Electron paramagnetic resonance, EPR)
電子自旋共振(Electron spin resonance, ESR)
橢圓偏振技術(Ellipsometry)
場流分離法(Field flow fractionation, FFF)
傳式轉換紅外線光譜術(Fourier Transform Infrared Spectros, FTIR)
氣相色譜法(Gas chromatography, GC)
氣相色譜-質譜法(Gas chromatography-mass spectrometry, GC-MS)
高效液相色譜法(High Performance Liquid Chromatography, HPLC)
離子微探針(Ion Microprobe, IM)
感應耦合電漿(Inctively coupled plasma, ICP)
Instrumental mass fractionation (IMF)
選擇性電極(Ion selective electrode, ISE)
激光誘導擊穿光譜儀(Laser Inced Breakdown Spectros, LIBS)
質譜儀(Mass spectrometry, MS)
穆斯堡爾光譜儀系統(Mossbauer spectros)
核磁共振(Nuclear magnetic resonance, NMR)
粒子誘發X-射線產生(Particle inced X-ray emission spectros,PIXE)
熱裂解-氣相色譜-質譜儀(Pyrolysis-Gas Chromatography-Mass Spectrometry, PY-GC-MS)
拉曼光譜(Raman spectros)
折射率
共振增強多光子電離譜(Resonance enhanced multi-photon ionization, REMPI)
掃瞄穿透X射線顯微鏡(Scanning transmission X-ray micros,STXM)
薄板層析(Thin layer chromatography,TLC)
穿透式電子顯微鏡(Transmission electron micros,TEM)
X射線熒光光譜儀(X-ray fluorescence spectros,XRF)
X射線顯微鏡(X-ray micros,XRM) 化學分析和儀器分析
凡主要利用化學原理進行分析的方法稱為化學分析法;而主要利用物理學原理進行分析的方法則稱為儀器分析法。當然這兩者的界限難以截然劃清,也有介乎二者之間的方法。
儀器一般指大型儀器,如核磁共振儀(見核磁共振譜)、X射線熒光儀 (見X射線熒光光譜分析法)、X射線衍射儀、質譜儀(見質譜法)、電子能譜儀等。原子發射光譜法和原子吸收光譜法基本上採用濕法預處理,然後在相應儀器中測定,可認為是介於二者之間的方法,也可看作是化學法與儀器法的聯合使用。不能認為用到儀器就是儀器分析。例如,重量分析開始於用天平稱量樣品,末一步再用天平稱沉澱重量。
天平是物理儀器,稱量是物理過程,但重量分析卻是公認的典型化學分析法,原因是重量分析主要靠欲測離子與沉澱劑作用而定量析出沉澱。至於經典法一詞,專指重量分析法和容量分析。其范圍遠狹於化學法。所以經典法僅是化學分析法的一部分,而不是全部。 粗分為無機分析和有機分析兩大類
天然產物和工業製品中的無機物,如岩石、礦物、陶瓷、鋼鐵、合金、礦物酸、燒鹼等的分析屬無機分析;石油、染料、塑料、食品、合成葯物、中草葯等的分析屬有機分析。簡言之,凡碳氫化合物及其衍生物的分析屬有機分析,而除上述物質外的分析統屬無機分析。不過,無機物中有時夾雜一些有機物質,而有機物也含有無機物質。例如,河水、海水中含有有機物,有些錳礦夾雜有機物,煤含有灰分,石油含有以絡合物形式存在的金屬,紙張中有無機填充物等。這類物品既用到無機分析,也用到有機分析。
還有一些方法對無機物質和有機物質同樣有效,如氣相色譜法便是其中之一。樣品中一氧化碳、二氧化碳、氫、氮、氧、甲烷、乙烯、水氣等在同一柱中,在選擇的條件下可逐一分離或分組分離。奧薩特氣體分析器也是如此,只是分離的原理不同。
痕量分析是指樣品所含的量極為微少。一般在樣品中含量多的為主要成分,含量少的為次要成分。E.B.桑德爾認為含量在1%~0.01%的為次要成分。有人認為在10%~0.01%的為次要成分。含量在萬分之一(0.01%)以下稱為痕量。痕量分析的動向趨於測定愈來愈低的含量,因此出現了超痕量分析,即含量接近或低於一般痕量下限。這名稱只是定性的。定量或更明確的名稱見下列規定:
痕量 10~10微克/克
微痕量10~10微克/克
納痕量 10~10微克/克
沙痕量 10~10
微克/克微痕量分析尚另有一種意義,即使用微量分析的稱樣,而測定其中痕量元素(例如<10微克/克)。為與前述一詞區分,後一詞應稱為微樣痕量分析。 ①選擇性最高,以至具有專一性,即干擾極少,這樣就可以減少或省略分離步驟;
②精密度和准確度最高;
③靈敏度最高,從而少量或痕量組分即可檢定和測定;
④測定范圍最廣,大量和痕量均能測定;
⑤能測定的元素種類和物種最多;
⑥方法簡便,即最易操作而不需高度技巧;
⑦經濟實惠,即要求費用少而收益大。但匯集所有優點於一法是辦不到的,例如,在重量分析中,如要提高准確度,需要延長分析時間(如用重沉澱法純化沉澱)。因為化學法測定原子量要求准確到十萬分之一,所以最費時間。 分析方法要力求簡便,不僅野外工作(諸如地質普查、化學探礦、環境監測、土壤檢測等)需要簡便、有效的化學分析方法,室內例行分析工作也如此。
因為在不損失所要求之准確度和精密度的前提下,方法簡便,步驟少,這就意味著節省時間、人力和費用。例如,金店收購金首飾時,是將其在試金石板上劃一道(科學名稱是條紋),然後從條紋的顏色來鑒定金的成色。這種條紋法在礦物鑒定中仍然採用。
當然,該法不及火試金法或原子吸收光譜法准確,但已能達到鑒定金器之目的。又如,糖尿病人的尿糖量可用特製的含酶試紙進行檢驗,從試紙的顏色變化估計含糖量的多寡,其方法之簡便連患者本人也會使用。另一方面,用原子吸收光譜法雖然也能間接測定尿樣中含糖量,但因為不經濟而沒有被採用。 雖然有不少靈敏的和選擇性強(甚至專一)的方法,但是如果欲測元素的濃度接近或低於方法的測定下限,則富集仍不可避免。富集方法很多,如升華、揮發、蒸餾、泡沫浮選(見痕量富集)、吸附(用分子篩、活性炭等)、色譜法、共沉澱、共結晶、汞齊作用、選擇溶解、溶劑萃取、離子交換等。
在檢出或測定之前,常常需要使欲測(或檢出)物質與干擾物質彼此分離。重要的分離方法有蒸餾、溶劑萃取、離子交換、電滲析、沉澱、電泳等,大都與富集方法相同。富集可認為是提高濃度的分離方法。
隱蔽作用(見隱蔽和解蔽)雖不是分離,但其作用使離子失去其正常性質,即令該離子以另一形式存於反應體系中。然而在分析化學中分離之目的無非使干擾離子不再干擾,因此就廣義而言,隱蔽及其相反作用解蔽應包括在分離范疇中。在分析化學中採用隱蔽和解蔽作用由來已久。重量分析、光度法、極譜法中均已應用,特別在點滴試驗和絡合滴定法中使用得更頻繁。 取樣最重要的要求是有代表性,即取來欲分析的樣品須能代表全體。均勻或容易混勻的物質取樣自不成問題,氣態和液態樣品屬於這一類。不均勻的固態物質,如礦石和煤炭等應按規定手續取樣。否則,分析結果不能代表原物質,徒然浪費人力物力。野外礦石取樣多由地質人員進行。所得大樣在試驗室中由分析人員按一定手續粉碎和縮分到小樣。另一方面,有機元素燃燒法分析合成的純樣品則無此問題。
樣品溶熔是第二步。溶熔包括溶解和熔融,也稱分解。有些樣品能溶解於水、酸或混合酸、鹼,以及有機溶劑中。上述辦法不能溶解的,可改用熔劑熔融。熔劑可分鹼性(如碳酸鈉)、酸性(如硫酸氫鉀)、氧化性(如過氧化鈉)和還原性的(如硫代硫酸鈉)。如果欲分析的成分較易揮發或熔融溫度高,對坩堝腐蝕嚴重,則可改用燒結,即將顆粒表面部分熔化。史密斯法用氯化銨和碳酸鈣(1:8~12)與硅酸鹽岩石混合和燒結,以測定其中的鹼金屬便是一例。有機化合物和生物樣品可採用干法或濕法灰化。干法灰化為在充分氧氣存在下加熱至炭化並逐漸燃燒,或在較低溫度用原子氧氧化(低溫灰化)。濕法灰化利用氧化性酸(如硝酸、高氯酸、濃硫酸)氧化樣品。干法、濕法各有其優缺點,須視樣品而定。

⑹ 光學探針是什麼

光學探針是一類能特異性識別目標分子並適合直接檢測或帶有可檢測標記物的高效探測試劑。光學探針在生化檢測、環境監控、疾病診斷和葯物篩選等領域發揮著重要的作用,目前已成為分析化學領域的研究熱點之一。羅丹明B是常見的氧雜葸類染料,其具有摩爾吸光系數較大、激發波長較長和熒光量子產率高等優點。

⑺ 談談你對分析化學的認識

分析化學,最主要的它是用來測定化學物質含量的這樣一種學科,這是研究科學必不可少的手段。

⑻ 現代分析化學的發展趨勢

分析化學學科的發展經歷了三次巨大變革:第一次是隨著分析化學基礎理論,特別是物理化學的基本概念(如溶液理論)的發展,使分析化學從一種技術演變成為一門科學,第二次變革是由於物理學和電子學的發展,改變了經典的以化學分析為主的局面,使儀器分析獲得蓬勃發展。目前,分析化學正處在第三次變革時期,生命科學、環境科學、新材料科學發展的要求,生物學、信息科學,計算機技術的引入,使分析化學進入了一個嶄新的境界。第三次變革的基本特點:從採用的手段看,是在綜合光、電、熱、聲和磁等現象的基礎上進一步採用數學、計算機科學及生物學等學科新成就對物質進行縱深分析的科學;從解決的任務看,現代分析化學已發展成為獲取形形色色物質盡可能全面的信息、進一步認識自然、改造自然的科學。現代分析化學的任務已不只限於測定物質的組成及含量,而是要對物質的形態(氧化-還原態、絡合態、結晶態)、結構(空間分布)、微區、薄層及化學和生物活性等作出瞬時追蹤、無損和在線監測等分析及過程式控制制。隨著計算機科學及儀器自動化的飛速發展,分析化學家也不能只滿足於分析數據的提供,而是要和其它學科的科學家相結合,逐步成為生產和科學研究中實際問題的解決者。近些年來,在全世界科學界和分析化學界開展了「化學正走出分析化學」、「分析物理」、「分析科學」等熱烈議論,反映了這次變革的深刻程度。
(一)提高靈敏度

這是各種分析方法長期以來所追求的目標。當代許多新的技術引入分析化學,都是與提高分析方法的靈敏度有關,如激光技術的引入,促進了諸如激光共振電離光譜、激光拉曼光譜、激光誘導熒光光譜、激光光熱光譜、激光光聲光譜和激光質譜的開展,大大提高了分析方法的靈敏度,使得檢測單個原子或單個分子成為可能。又如多元配合物、有機顯色劑和各種增效試劑的研究與應用,使吸收光譜、熒光光譜、發光光譜、電化學及色譜等分析方法的靈敏度和分析性能得到大幅度地提高。

(二)解決復雜體系的分離問題及

提高分析方法的選擇性

迄今,人們所認識的化合物已超過1000萬種,而且新的化合物仍在快速增長。復雜體系的分離和測定已成為分析化學家所面臨的艱巨任務。由液相色譜、氣相色譜、超臨界流體色譜和毛細管電泳等所組成的色譜學是現代分離、分析的主要組成部分並獲得了很快的發展。以色譜、光譜和質譜技術為基礎所開展的各種聯用、介面及樣品引入技術已成為當今分析化學發展中的熱點之一。在提高方法選擇性方面,各種選擇性試劑、萃取劑、離子交換劑、吸附劑、表面活性劑、各種感測器的接著劑、各種選擇檢測技術和化學計量學方法等是當前研究工作的重要課題。

(三)擴展時空多維信息

現代分析化學的發展已不再局限於將待測組分分離出來進行表徵和測量,而是成為一門為物質提供盡可能多的化學信息的科學。隨著人們對客觀物質的認識的深入,某些過去所不甚熟悉的領域,如多維、不穩態和邊界條件等也逐漸提到分析化學家的日程上來。例如現代核磁共振波譜、紅外光譜、質譜等的發展,可提供有機物分子的精細結構、空間排列構型及瞬態等變化的信息,為人們對化學反應歷程及生命過程的認識展現了光輝的前景。化學計量學的發展,更為處理和解析各種化學信息提供了重要基礎。

(四)微型化及微環境的表徵與測定

微型化及微環境分析是現代分析化學認識自然從宏觀到微觀的延伸。電子學、光學和工程學向微型化發展、人們對生物功能的了解,促進了分析化學深入微觀世界的進程。電子顯微技術、電子探針X射線微量分析、激光微探針質譜等微束技術已成為進行微區分析的重要手段。在表面分析方面,電子能譜、次級離子質譜、脈沖激光原子探針等的發展,可檢測和表徵一個單原子層,因而在材料科學、催化劑、生物學、物理學和理論化學研究中占據重要的位置。此外,對於電極表面修飾行為和表徵過程的研究,各種分離科學理論、聯用技術、超微電極和光譜電化學等的應用,為揭示反應機理,開發新體系,進行分子設計等開辟了新的途徑。

(五)形態、狀態分析及表徵

在環境科學中,同一元素的不同價態和所生成的不同的有機化合物分子的不同形態都可能存在毒性上的極大差異。在材料科學中物質的晶態、結合態更是影響材料性能的重要因素。目前已報道利用諸如陽極溶出伏安法、X射線光電子能譜、X射線熒光光譜、X射線衍射、熱分析、各種吸收光譜方法和各種聯用技術來解決物質存在的形態和狀態問題。

(六)生物大分子及生物活性物質的表徵與測定

70年代以來,世界各發達國家都將生命科學及其有關的生物工程列為科學研究中最優先發展的領域,在歐、美、日等地區和國傢具有戰略意義的宏大研究規劃「尤利卡計劃」,「人類基因圖」及「人體研究新前沿」中,生物大分子的結構分析研究都占據重要的位置。我國在2000年前發展高技術戰略的規劃中,也把生物技術列為七個重點領域之一。一方面生命科學及生物工程的發展向分析化學提出了新的挑戰。另一方面仿生過程的模擬,又成為現代分析化學取之不盡的源泉。當前採用以色譜、質譜、核磁共振、熒光、磷光、化學發光和免疫分析以及化學感測器、生物感測器、化學修飾電極和生物電分析化學等為主體的各種分析手段,不但在生命體和有機組織的整體水平上,而且在分子和細胞水平上來認識和研究生命過程中某些大分子及生物活性物質的化學和生物本質方面,已日益顯示出十分重要的作用。

(七)非破壞性檢測及遙測

它是分析方法的又一重要外延。當今的許多物理和物理化學分析方法都已發展為非破壞性檢測。這對於生產流程式控制制,自動分析及難於取樣的諸如生命過程等的分析是極端重要的。遙測技術應用較多的是激光雷達、激光散射和共振熒光、傅里葉變換紅外光譜等,已成功地用於測定幾十公里距離內的氣體、某些金屬的原子和分子、飛機尾氣組成,煉油廠周圍大氣組成等,並為紅外製導和反制導系統的設計提供理論和實驗根據。

(八)自動化及智能化

微電子工業、大規模集成電路、微處理器和微型計算機的發展,使分析化學和其它科學與技術一樣進入了自動化和智能化的階段。機器人是實現基本化學操作自動化的重要工具。專家系統是人工智慧的最前沿。在分析化學中,專家系統主要用作設計實驗和開發分析方法,進行譜圖說明和結構解釋。80年代興起的過程分析已使分析化學家擺脫傳統的實驗室操作,進入到生產過程、甚至生態過程式控制制的行列。分析化學機器人和現代分析儀器作為「硬體」,化學計量學和各種計算機程序作為「軟體」,其對分析化學所帶來的影響將會是十分深遠的。

⑼ 什麼是分析化學

分析化學(analytical chemistry)是研究獲取物質化學組成和結構信息的分析方法及相關理論的科學,是化學學科的一個重要分支。分析化學的主要任務是鑒定物質的化學組成(元素、離子、官能團、或化合物)、測定物質的有關組分的含量、確定物質的結構(化學結構、晶體結構、空間分布)和存在形態(價態、配位態、結晶態)及其與物質性質之間的關系等。

分析化學開發分析物質成分、結構的方法,使化學成分得以定性和定量,化學結構得以確定。分析化學是化學家最基礎的訓練之一,化學家在實驗技術和基礎知識上的訓練,皆得力於分析化學。當代分析化學著重儀器分析,常用的分析儀器有幾大類,包括原子與分子光譜儀,電化學分析儀器,核磁共振,X光,以及質譜儀。儀器分析之外的分析化學方法,現在統稱為古典分析化學。

分析化學是化學的一個重要分支,它主要研究物質中有哪些元素或基團(定性分析);每種成分的數量或物質純度如何(定量分析);原子如何聯結成分子,以及在空間如何排列等等。

分析化學以化學基本理論和實驗技術為基礎,並吸收物理、生物、統計、電子計算機、自動化等方面的知識以充實本身的內容,從而解決科學、技術所提出的各種分析問題。

分析化學這一名稱雖創自玻意耳,但其實踐運用與化學工藝的歷史同樣古老。古代冶煉、釀造等工藝的高度發展,都是與鑒定、分析、製作過程的控制等手段密切聯系在一起的。在東、西方興起的煉丹術、煉金術等都可視為分析化學的前驅。

公元前3000年,埃及人已經掌握了一些稱量的技術。最早出現的分析用儀器當屬等臂天平,它在公元前1300年的《莎草紙卷》上已有記載。巴比倫的祭司所保管的石制標准砝碼(約公元前2600)尚存於世。不過等臂天平用於化學分析,當始於中世紀的烤缽試金法中。

古代認識的元素,非金屬有碳和硫,金屬中有銅、銀、金、鐵、鉛、錫和汞。公元前四世紀已使用試金石以鑒定金的成色,公元前三世紀,阿基米德在解決敘拉古王喜朗二世的金冕的純度問題時,即利用了金、銀密度之差,這是無傷損分析的先驅。

公元60年左右,老普林尼將五倍子浸液塗在莎草紙上,用以檢出硫酸銅的摻雜物鐵,這是最早使用的有機試劑,也是最早的試紙。遲至1751年,埃勒爾·馮·布羅克豪森用同一方法檢出血渣(經灰化)中的含鐵量。

火試金法是一種古老的分析方法。遠在公元前13世紀,巴比倫王致書埃及法老阿門菲斯四世稱:「陛下送來之金經入爐後,重量減輕……」這說明3000多年前人們已知道「真金不怕火煉」這一事實。法國菲利普六世曾規定黃金檢驗的步驟,其中提出對所使用天平的構造要求和使用方法,如天平不應置於受風吹或寒冷之處,使用者的呼吸不得影響天平的稱量等。

18世紀的瑞典化學家貝格曼可稱為無機定性、定量分析的奠基人。他最先提出金屬元素除金屬態外,也可以其他形式離析和稱量,特別是以水中難溶的形式,這是重量分析中濕法的起源。

德國化學家克拉普羅特不僅改進了重量分析的步驟,還設計了多種非金屬元素測定步驟。他准確地測定了近200種礦物的成分及各種工業產品如玻璃、非鐵合金等的組分。

18世紀分析化學的代表人物首推貝采利烏斯。他引入了一些新試劑和一些新技巧,並使用無灰濾紙、低灰分濾紙和洗滌瓶。他是第一位把原子量測得比較精確的化學家。除無機物外,他還測定過有機物中元素的百分數。他對吹管分析尤為重視,即將少許樣品置於炭塊凹處,用氧化或還原焰加熱,以觀察其變化,從而獲得有關樣品的定性知識。此法一直沿用至19世紀,其優點是迅速、所需樣品量少,又可用於野外勘探和普查礦產資源等。

19世紀分析化學的傑出人物之一是弗雷澤紐斯,他創立一所分析化學專業學校(此校至今依然存在);並於1862年創辦德文的《分析化學》雜志,由其後人繼續任主編至今。他編寫的《定性分析》、《定量分析》兩書曾譯為多種文字,包括晚清時代出版的中譯本,分別定名為《化學考質》和《化學求數》。他將定性分析的陽離子硫化氫系統修訂為目前的五組,還注意到酸鹼度對金屬硫化物沉澱的影響。在容量分析中,他提出用二氯化錫滴定三價鐵至黃色消失。

1663年波義耳報道了用植物色素作酸鹼指示劑,這是容量分析的先驅。但真正的容量分析應歸功於法國蓋·呂薩克。1824年他發表漂白粉中有效氯的測定,用磺化靛青作指示劑。隨後他用硫酸滴定草木灰,又用氯化鈉滴定硝酸銀。這三項工作分別代表氧化還原滴定法、酸鹼滴定法和沉澱滴定法。絡合滴定法創自李比希,他用銀滴定氰離子。

另一位對容量分析作出卓越貢獻的是德國莫爾,他設計的可盛強鹼溶液的滴定管至今仍在沿用。他推薦草酸作鹼量法的基準物質,硫酸亞鐵銨(也稱莫爾鹽)作氧化還原滴定法的基準物質。

最早的微量分析是化學顯微術,即在顯微鏡下觀察樣品或反應物的晶態、光學性質、顆粒尺寸和圓球直徑等。17世紀中葉胡克從事顯微鏡術的研究,並於1665年出版《顯微圖譜》。法國葯劑師德卡羅齊耶在1784年用顯微鏡以氯鉑酸鹽形式區別鉀、鈉。德意志化學家馬格拉夫在1747年用顯微鏡證實蔗糖和甜菜糖實為同一物質;在1756年用顯微鏡檢驗鉑族金屬。1891年,萊爾曼提出熱顯微術,即在顯微鏡下觀察晶體遇熱時的變化。科夫勒及其夫人設計了兩種顯微鏡加熱台,便於研究葯物及有機化合物的鑒定。後來又發展到電子顯微鏡,解析度可達1埃。

不用顯微鏡的最早的微量分析者應推德國德貝賴納。他從事濕法微量分析,還有吹管法和火焰反應,並發表了《微量化學實驗技術》一書。近代微量分析奠基人是埃米希,他設計和改進微量化學天平,使其靈敏度達到微量化學分析的要求;改進和提出新的操作方法,實現毫克級無機樣品的測定,並證實納克級樣品測定的精確度不亞於毫克級測定。

有機微量定量分析奠基人是普雷格爾,他曾從膽汁中離析出一種降解產物,其量尚不足作一次常量碳氫分析。在聽了埃米希於1909年所作有關微量定量分析的講演並參觀其實驗室後,他決意將常量燃燒法改為微量法(樣品數毫克),並獲得成功;1917年出版《有機微量定量分析》一書,並在1923年獲諾貝爾化學獎。

德國化學家龍格在1850年將染料混合液滴在吸墨紙上使之分離,更早些時候他曾用染有澱粉和碘化鉀溶液的濾紙或花布塊作過漂白液的點滴試驗。他又用浸過硫酸鐵和銅溶液的紙,在其中部滴加黃血鹽,等每滴吸入後再加第二滴,因此獲得自行產生的美麗圖案。1861年出現舍恩拜因的毛細管分析,他將濾紙條浸入含數種無機鹽的水中,水攜帶鹽類沿紙條上升,以水升得最高,其他離子依其遷移率而分離成為連接的帶。這與紙層析極為相近。他的學生研究於濾紙上分離有機化合物獲得成功,能明顯而完全分離有機染料。

20世紀60年代,魏斯提出環爐技術。僅用微克量樣品置濾紙中,繼用溶劑淋洗,而後在濾紙外沿加熱以蒸發溶劑,遂分離為若干同心環。如離子無色可噴以靈敏的顯色劑或熒光劑,既能檢出,又能得半定量結果。

色譜法也稱層析法。1906年俄國茨維特將綠葉提取汁加在碳酸鈣沉澱柱頂部,繼用純溶劑淋洗,從而分離出葉綠素。此項研究發表在德國《植物學》雜志上,但未能引起人們注意。直到1931年德國的庫恩和萊德爾再次發現本法並顯示其效能,人們才從文獻中追溯到茨維特的研究和更早的有關研究,如1850年韋曾利用土壤柱進行分離;1893年裡德用高嶺土柱分離無機鹽和有機鹽等等。

氣體吸附層析始於20世紀30年代的舒夫坦和尤肯。40年代,德國黑塞利用氣體吸附以分離揮發性有機酸。英國格盧考夫也用同一原理在1946年分離空氣中的氫和氖,並在1951年製成氣相色譜儀。第一台現代氣相色譜儀研製成功應歸功於克里默。

氣體分配層析法根據液液分配原理,由英國馬丁和辛格於1941年提出。並因此而獲得1952年諾貝爾化學獎。戈萊提出用長毛細管柱,是另一創新。

色譜-質譜聯用法中將色譜法所得之淋出流體移入質譜儀,可使復雜的有機混合物在數小時內得到分離和鑒定,是最有效的分析方法之一。

希臘哲學家泰奧弗拉斯圖斯曾記錄各種岩石礦物及其他物質遇熱所發生的影響,這是熱分析技術的最早紀錄。法國勒夏忒列和英國羅伯茨·奧斯汀同稱為差熱分析的鼻祖。20世紀60年代又出現了精細的差熱分析儀和奧尼爾提出的差示掃描量熱法,它能測定化合物的純度及其他參數,如熔點和玻璃化、聚合、熱降解、氧化等溫度。

比色法以日光為光源,靠目視比較顏色深淺。最早的記錄是1838年蘭帕迪烏斯在玻璃量筒中測定鑽礦中的鐵和鎳,用標准參比溶液與試樣溶液相比較。1846年雅克蘭提出根據銅氨溶液的藍色測定銅。隨後有赫羅帕思的硫氰酸根法測定鐵;奈斯勒法測定氨;苯酚二磷酸法制定硝酸根;過氧化氫法測定釷;亞甲基藍法測定硫化氫;磷硅酸法測定二氧化硅等。

最早研究化合物的紫外吸收光譜的是亨利,他繪制出摩爾吸光系數對波長的曲線。紅外光譜在20年代開始應用於汽油爆震研究,繼用於鑒定天然和合成橡膠以及其他有機化合物中的未知物和雜質。喇曼光譜是研究分子振動的另一種方法。喇曼光譜法的信號太弱,使用困難,直至用激光作為單色光源後,才促進其在分析化學中的應用。

而對於原子發射光譜法的應用可上溯至牛頓,他在暗室中用棱鏡將日光分解為七種顏色;1800年赫歇耳發現紅外線;次年裡特用氫化銀還原現象發現紫外區;次年,渥拉斯頓觀察到日光光譜中的暗線;15年後,夫琅和費經過研究,命名暗線為夫琅和費線。

本生發明了名為本生燈的煤氣燈,燈的火焰近於透明而不發光,便於光譜研究。1859年,本生和他的同事物理學家基爾霍夫研究各元素在火焰中呈示的特徵發射和吸收光譜,並指出日光光譜中的夫琅和費線是原子吸收線,因為太陽的大氣中存在各種元素。他們用的儀器已具備現代分光鏡的要素,他們可稱為發射光譜法的創始人。

能斯脫在1889年提出了能斯脫公式,將電動勢與離子濃度、溫度聯系起來,奠定了電化學的理論基礎。隨後,電化學分析法有了發展,電沉積重量法、電位分析法、電導分析法、安培滴定法、庫侖滴定法、示波極譜法相繼出現。氫電極、玻璃電極和離子選擇性電極陸續製成,尤以極譜分析技術貢獻卓著。

還有一些方法對無機物質和有機物質同樣有效,如氣相色譜法便是其中之一。樣品中一氧化碳、二氧化碳、氫、氮、氧、甲烷、乙烯、水氣等在同一柱中,在選擇的條件下可逐一分離或分組分離。奧薩特氣體分析器也是如此,只是分離的原理不同。

痕量分析是指樣品所含的量極為微少。一般,在樣品中含量多的為主要成分,含量少的為次要成分。桑德爾認為含量在1%~0.01%的為次要成分。有人認為在10%~0.01%的為次要成分。含量在萬分之一以下稱為痕量。痕量分析的動向趨於測定愈來愈低的含量,因此出現了超痕量分析,即含量接近或低於一般痕量下限。這名稱只是定性的。

微痕量分析尚另有一種意義,即使用微量分析的稱樣,而測定其中痕量元素。為與前述一詞區分,後一詞應稱為微樣痕量分析。

理想的化學分析方法應該具有這樣的一些特點:選擇性最高,這樣就可以減輕或省略分離步驟;精密度和准確度高;靈敏度高,從而少量或痕量組分即可檢定和測定;測定范圍廣,大量和痕量均能測定;能測定的元素種類和物種最多;方法簡便;經濟實惠。但匯集所有優點於一法是辦不到的,例如,在重量分析中,如要提高准確度,需要延長分析時間。因為化學法制定原子量要求准確到十萬分之一,所以最費時間。

分析方法要力求簡便,不僅野外工作需要簡便、有效的化學分析方法,室內例行分析工作也如此。因為在不損失所要求的准確度和精度的前提下,簡便方法步驟少,這就意味著節省時間、人力和費用。例如,金店收購金首飾時,是將其在試金石板上劃一道(科學名稱是條紋),然後從條紋的顏色來決定金的成色。這種條紋法在礦物鑒定中仍然採用。

分析化學所用的方法可分為化學分析法和儀器分析法,二者各有優缺點,相輔相成。分析化學者必須明確每一種方法的原理及其應用范圍和優缺點,這樣在解決分析問題時才能得心應手,選擇最適宜的方法。一般來說,化學法准確、精密、費用少而且容易掌握。儀器法迅速,能處理大批樣品,但大型儀器價格昂貴,幾年後又須更新儀器。

近來分析化學中的新技術有激光在分析化學中的應用、流動注射法、場流分級等。場流分級所用的場可以是重力、磁、電、熱等,樣品流經適當的場時能進行分級,故稱為場流分級。目前,該法已成功地用於有機大分子(如血球、高聚物等)之分級。可以預期它在無機物分離方面也將得到應用。

加強對高靈敏度和高選擇性試劑的研究,對於隱蔽解蔽和分離、富集方法的研究,以及元素存在狀態的測定(與環境分析和地球化學的關系至為密切)都是重要的課題。將二三種各具優點的方法聯合使用,可使以前不能測定的項目變為可能,仍是發展的方向,氣相色譜法與質譜法的聯用便是明顯的例子。

分析化學有極高的實用價值,對人類的物質文明作出了重要貢獻,廣泛的應用於地質普查、礦產勘探、冶金、化學工業、能源、農業、醫葯、臨床化驗、環境保護、商品檢驗等領域。

[編輯]當代分析化學
當代分析化學將研究分為兩個范疇,一是分析的對象,一是分析的方法。<分析化學期刊>(Analytical Chemistry)每年在第12期會在兩個范疇輪流做一次回顧評述。

[編輯]分析的對象
生物分析化學(Bioanalytical chemistry)
材料分析(Material analysis)
化學分析(Chemical analysis)
環境分析(Environmental analysis)
鑒識化學/鑒識科學(Forensic chemistry|Forensics)

[編輯]分析的方法
光譜學
質譜學
分光度和比色法
層析和電泳法
結晶學
顯微術
電化學分析
[編輯]古典分析
雖說當代分析方法絕大部分為儀器分析,但有些儀器最初的設計目的,是為了簡化古典方法的不便,基本原理仍來自於古典分析。另外,樣品配置等前置處理,仍需要藉由古典分析手法的協助。以下舉一些古典分析方法:
滴定法
重量分析
無機定性分析
[編輯]儀器分析
原子吸收光譜法(Atomic absorption spectros, AAS)
原子熒光光譜法(Atomic fluorescence spectros, AFS)
α質子-X射線光譜儀(Alpha particle X-ray spectrometer, APXS)
毛細管電泳分析儀(Capillary electrophoresis, CE)
色譜法(Chromatography)
比色法(Colorimetry)
循環伏安法(Cyclic Voltammetry, CV)
差示掃描量熱法(Differential scanning calorimetry, DSC)
電子順旋共振儀(Electron paramagnetic resonance, EPR)
電子自旋共振(Electron spin resonance, ESR)
橢圓偏振技術(Ellipsometry)
場流分離法(Field flow fractionation, FFF)
傳式轉換紅外線光譜術(Fourier Transform Infrared Spectros, FTIR)
氣相色譜法(Gas chromatography, GC)
氣相色譜-質譜法(Gas chromatography-mass spectrometry, GC-MS)
高效液相色譜法(High Performance Liquid Chromatography, HPLC)
離子微探針(Ion Microprobe, IM)
感應耦合電漿(Inctively coupled plasma, ICP)
Instrumental mass fractionation (IMF)
選擇性電極(Ion selective electrode, ISE)
激光誘導擊穿光譜儀(Laser Inced Breakdown Spectros, LIBS)
質譜儀(Mass spectrometry, MS)
穆斯堡爾光譜儀系統(Mossbauer spectros)
核磁共振(Nuclear magnetic resonance, NMR)
粒子誘發X-射線產生(Particle inced X-ray emission spectros,PIXE)
熱裂解-氣相色譜-質譜儀(Pyrolysis-Gas Chromatography-Mass Spectrometry, PY-GC-MS)
拉曼光譜(Raman spectros)
折射率
共振增強多光子電離譜(Resonance enhanced multi-photon ionization, REMPI)
掃瞄穿透X射線顯微鏡(Scanning transmission X-ray micros, STXM)
薄板層析(Thin layer chromatography, TLC)
穿透式電子顯微鏡(Transmission electron micros, TEM)
X射線熒光光譜儀(X-ray fluorescence spectros, XRF)
X射線顯微鏡(X-ray micros, XRM)

⑽ 淺談分析化學

分析化學作為化學的基礎課,研究獲取物質化學組成和結構信息的分析方法及相關理論的科學,是化學學科的一個重要分支。分析化學以化學基本理論和實驗技術為基礎,鑒定物質的化學組成,測定物質的有關組分含量,確定物質的結構和存在形態等,是培養具有創新精神和實踐能力的化學化工類專業人才所必須的重要課程。由此可見,分析化學在日常生活和發展中起著巨大的作用。因此,作為化學專業的人員學好分析化學勢在必行。 學生學習化學,是以直觀的實驗為基礎,由感性認識到理性認識的飛躍和理性認識到實踐的飛躍。化學學習需根據學習任務、學習規律和總結化學學習經驗,提高學習效率、質量。 人是活的,書是死的。活人讀死書,可以把書讀活。死書讀活人,可以把人讀死。這是郭沫若在游太湖為遊人所提的詞。因此學習分析化學需要講究學習方法。 分析化學包括理論課和實踐課。
2 掌握每個理論的來源和結論、作用是學好分析化學的基礎。尤其是書中一些特別重要的概念的掌握需要反復的思考和練習。學源於思,思源於疑。小疑則小進,大疑則大進。由於「分析化學原理」涉及整個化學領域的理論,涉及面廣,留給了人們很大的思考空間。分析化學學習是認識過程,艱苦的腦力勞動別人是代替不了的。學習中遇到的問題,通過思考如果解決不了,就要主要請求老師、同學幫助解決。 學習中要建立知識體系,分析化學中涉及公式很多。不同的公式有不同的適用條件,應記住最基本的公式,同時掌握重要的推導方法。盡量多做題,是學好「分析化學原理」的前提。因為概念理論課是以反復做題為基礎的,做題時不必每題必解,這樣可以節省時間,從而解決更多的問題。 分析化學學習中一個非常重要的環節就是強化,及時強化是學習和發展的需要。如元素符號、分子式、化學方程式等化學用語是化學特有的。化學用語沒有學會和記住是造成學習質量不高、學習發展困難的一個重要原因。強化的方法多種多樣。有的方法適合別人,並非適合自己。不同年級、不同專業、不同學生之間的學習方法都可能不一樣 。所以,每個人要結合自己的實際情況(學習目標、任務、興趣、愛好)來選擇適合自己的方法。 鍥而不舍,持之以恆。學習化學就是需要這樣的耐力。很多同學在制定計劃時熱血沸騰,但一遇到挫折,便銳氣大減,「激流勇退」。「自勝者強」,「唯志堅者始遂其志」。

閱讀全文

與分析化學中如何理解探針相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:663
乙酸乙酯化學式怎麼算 瀏覽:1334
沈陽初中的數學是什麼版本的 瀏覽:1271
華為手機家人共享如何查看地理位置 瀏覽:957
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:809
數學c什麼意思是什麼意思是什麼 瀏覽:1324
中考初中地理如何補 瀏覽:1221
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:631
數學奧數卡怎麼辦 瀏覽:1301
如何回答地理是什麼 瀏覽:953
win7如何刪除電腦文件瀏覽歷史 瀏覽:984
大學物理實驗干什麼用的到 瀏覽:1405
二年級上冊數學框框怎麼填 瀏覽:1615
西安瑞禧生物科技有限公司怎麼樣 瀏覽:756
武大的分析化學怎麼樣 瀏覽:1173
ige電化學發光偏高怎麼辦 瀏覽:1262
學而思初中英語和語文怎麼樣 瀏覽:1556
下列哪個水飛薊素化學結構 瀏覽:1351
化學理學哪些專業好 瀏覽:1417
數學中的棱的意思是什麼 瀏覽:974