㈠ 化學中的鍵是什麼是一種具體的物質嗎
化學鍵(chemical bond)是指分子內或晶體內相鄰兩個或多個原子(或離子)間強烈的相互作用力的統稱。高中定義:使離子相結合或原子相結合的作用力通稱為化學鍵。簡單的說就是多個原子之間都要得到電子,從而形成的共同電子組,而這個電子組就叫化學鍵。
㈡ 配位鍵是什麼,屬於化學鍵嗎
由一方提供成鍵電子的化學鍵稱為配位鍵
例如,2個氫原子和1個氧原子通過化學鍵結合成水分子
。化學鍵有3種極限類型
,即離子鍵、共價鍵和金屬鍵。離子鍵是由異性電荷產生的吸引作用,例如氯和鈉以離子鍵結合成NaCl分子。共價鍵是兩個或幾個原子通過共有電子產生的吸引作用,典型的共價鍵是兩個原子借吸引一對成鍵電子而形成的。例如,兩個氫核同時吸引一對電子,形成穩定的氫分子。金屬鍵則是使金屬原子結合在一起的相互作用,可以看成是高度離域的共價鍵。定位於兩個原子之間的化學鍵稱為定域鍵。由多個原子共有電子形成的多中心鍵稱為離域鍵。除此以外,還有過渡類型的化學鍵:鍵電子偏向一方的共價鍵稱為極性鍵,由一方提供成鍵電子的化學鍵稱為配位鍵。極性鍵的兩端極限是離子鍵和非極性鍵,離域鍵的兩端極限是定域鍵和金屬鍵
㈢ 原子之間如何形成化學鍵的
1通過電子轉移:(離子鍵)2形成共用電子對
(共價鍵)
㈣ 兩個原子或多個原子之間的相互作用叫做共價鍵
共價鍵是有共用電子對形成的鍵,原子與原子之間相互作用不一定是共價鍵,比如金屬原子之間,既不是共價鍵也不是離子鍵
㈤ 化學鍵有哪些
化學鍵(chemical bond)是指分子內或晶體內相鄰兩個或多個原子(或離子)間強烈的相互作用力的統稱.高中定義:使離子相結合或原子相結合的作用力通稱為化學鍵.
包括離子鍵、共價鍵、金屬鍵、極性鍵、非極性鍵、配位鍵等.
化學鍵(chemical bond)是純凈物分子內或晶體內相鄰兩個或多個原子(或離子)間強烈的相互作用力的統稱。使離子相結合或原子相結合的作用力通稱為化學鍵。
離子鍵、共價鍵、金屬鍵各自有不同的成因,離子鍵是通過原子間電子轉移,形成正負離子,由靜電作用形成的。共價鍵的成因較為復雜,路易斯理論認為,共價鍵是通過原子間共用一對或多對電子形成的,其他的解釋還有價鍵理論,價層電子互斥理論,分子軌道理論和雜化軌道理論等。金屬鍵是一種改性的共價鍵,它是由多個原子共用一些自由流動的電子形成的。
在一個水分子中2個氫原子和1個氧原子就是通過化學鍵結合成水分子。由於原子核帶正電,電子帶負電,所以我們可以說,所有的化學鍵都是由兩個或多個原子核對電子同時吸引的結果所形成。化學鍵有3種類型 ,即離子鍵、共價鍵、金屬鍵(氫鍵不是化學鍵,它是分子間力的一種)。
㈥ 化學鍵是什麼誒
化學鍵 [編輯本段]化學術語 1定義:化學鍵(chemical bond)是指分子或晶體內相鄰原子(或離子)間強烈的相互作用。 2分類:金屬鍵、離子鍵、共價鍵。 化學鍵的分類 在水分子H2O中2個氫原子和1個氧原子通過化學鍵結合成水分子 。化學鍵有3種極限類型 ,即離子鍵、共價鍵和金屬鍵。離子鍵是由異性電荷產生的吸引作用,例如氯和鈉以離子鍵結合成NaCl。共價鍵是兩個或幾個原子通過共用電子對產生的吸引作用,典型的共價鍵是兩個原子借吸引一對成鍵電子而形成的。例如,兩個氫核同時吸引一對電子,形成穩定的氫分子。金屬鍵則是使金屬原子結合在一起的相互作用,可以看成是高度離域的共價鍵。定位於兩個原子之間的化學鍵稱為定域鍵。由多個原子共有電子形成的多中心鍵稱為離域鍵。除此以外,還有過渡類型的化學鍵:由於粒子對電子吸引力大小的不同,使鍵電子偏向一方的共價鍵稱為極性鍵,由一方提供成鍵電子的化學鍵稱為配位鍵。極性鍵的兩端極限是離子鍵和非極性鍵,離域鍵的兩端極限是定域鍵和金屬鍵。 離子鍵與共價鍵 1、離子鍵 [1] 是由正負離子之間通過靜電引力吸引而形成的,正負離子為球形或者近似球形,電荷球形對稱分布,那麼離子鍵就可以在各個方向上發生靜電作用,因此是沒有方向性的。 2、一個離子可以同時與多個帶相反電荷的離子互相吸引成鍵,雖然在離子晶體中,一個離子只能與幾個帶相反電荷的離子直接作用(如NaCl中Na+可以與6個Cl-直接作用),但是這是由於空間因素造成的。在距離較遠的地方,同樣有比較弱的作用存在,因此是沒有飽和性的。化學鍵的概念是在總結長期實踐經驗的基礎上建立和發展起來的,用來概括觀察到的大量化學事實,特別是用來說明原子為何以一定的比例結合成具有確定幾何形狀的、相對穩定和相對獨立的、性質與其組成原子完全不同的分子。開始時,人們在相互結合的兩個原子之間畫一根短線作為化學鍵的符號 ;電子發現以後 ,1916年G.N.路易斯提出通過填滿電子穩定殼層形成離子和離子鍵或者通過兩個原子共有一對電子形成共價鍵的概念,建立化學鍵的電子理論。 量子理論建立以後,1927年 W.H.海特勒和F.W.倫敦通過氫分子的量子力學處理,說明了氫分子穩定存在的原因 ,原則上闡明了化學鍵的本質。通過以後許多人 ,物別是L.C.鮑林和R.S.馬利肯的工作,化學鍵的理論解釋已日趨完善。 化學鍵在本質上是電性的,原子在形成分子時,外層電子發生了重新分布(轉移、共用、偏移等),從而產生了正、負電性間的強烈作用力。但這種電性作用的方式和程度有所不同,所以有可將化學鍵分為離子鍵、共價鍵和金屬鍵等。 離子鍵是原子得失電子後生成的陰陽離子之間靠靜電作用而形成的化學鍵。離子鍵的本質是靜電作用。由於靜電引力沒有方向性,陰陽離子之見的作用可在任何方向上,離子鍵沒有方向性。只有條件允許,陽離子周圍可以盡可能多的吸引陰離子,反之亦然,離子鍵沒有飽和性。不同的陰離子和陽離子的半徑、電性不同,所形成的晶體空間點陣並不相同。 共價鍵是原子間通過共用電子對(電子雲重疊)而形成的化學鍵。形成重疊電子雲的電子在所有成鍵的原子周圍運動。一個原子有幾個未成對電子,便可以和幾個自旋方向相反的電子配對成鍵,共價鍵飽和性的產生是由於電子雲重疊(電子配對)時仍然遵循泡利不相容原理。電子雲重疊只能在一定的方向上發生重疊,。共價鍵方向性的產生是由於形成共價鍵時,電子雲重疊的區域越大,形成的共價鍵越穩定,所以,形成共價鍵時總是沿著電子雲重疊程度最大的方向形成(這就是最大重疊原理)。共價鍵有飽和性和方向性。 1、共價鍵的形成是成鍵電子的原子軌道發生重疊,並且要使共價鍵穩定,必須重疊部分最大。由於除了s軌道之外,其他軌道都有一定伸展方向,因此成鍵時除了s-s的σ鍵(如H2)在任何方向都能最大重疊外,其他軌道所成的鍵都只有沿著一定方向才能達到最大重疊。 共價鍵的分類 共價鍵有不同的分類方法。 (1) 按共用電子對的數目分,有單鍵(Cl—Cl)、雙鍵(C=C)、叄鍵(C C)等。 (2) 按共用電子對是否偏移分類,有極性鍵(H—Cl)和非極性鍵(Cl—Cl)。 (3) 按提供電子對的方式分類,有正常的共價鍵和配位鍵(共用電子對由一方提供,另一方提供空軌道。如氨分子中的N—H鍵中有一個屬於配位鍵)。 (4) 按電子雲重疊方式分,有σ鍵(電子雲沿鍵軸方向,以「頭碰頭」方式成鍵。如C—C。)和π鍵(電子雲沿鍵軸兩側方向,以「肩並肩」方向成鍵。如C=C中鍵能較小的鍵。)等 2、舊理論:共價鍵形成的條件是原子中必須有成單電子,自旋方向必須相反,由於一個原子的一個成單電子只能與另一個成單電子配對,因此共價鍵有飽和性。如原子與Cl原子形成HCl分子後,不能再與另外一個Cl形成HCl2了。 3、新理論:共價鍵形成時,成鍵電子所在的原子軌道發生重疊並分裂,成鍵電子填入能量較低的軌道即成鍵軌道。如果還有其他的原子參與成鍵的話,其所提供的電子將會填入能量較高的反鍵軌道,形成的分子也將不穩定。 像HCL這樣的共用電子對形成分子的化合物叫做共價化合物 洪德規則 高分辨光譜事實揭示核外電子還存在著一種奇特的量子化運動,人們稱其為自旋運動,用自旋磁量子數(spin m.q.n)表示,每個軌道最多可以容納兩個自旋相反的電子。記做「↑↓」但需要指出,這里的自旋和地球的自轉不同,自旋的實質還是一個等待發現的未解之謎 [1] 。 原子核也可以存在凈自旋。由於熱平衡,通常這些原子核都是隨機朝向的。但對於一些特定元素,例如氙-129,一部分核自旋也是可能被極化的,這個狀態被叫做超極化,在核磁共振成像中有很重要的應用。 洪德在總結大量光譜和電離勢數據的基礎上提出:電子在簡並軌道上排布時,將盡可能分佔不同的軌道,且自旋平行 [3] 。對於同一個電子亞層,當電子排布處於 全滿(s^2、p^6、d^10、f^14) 半滿(s^1、p^3、d^5、f^7) 全空(s^0、p^0、d^0、f^0) 時比較穩定。
㈦ 化學鍵類型
(1)離子鍵
離子鍵是正、負離子之間的靜電相互作用力,鍵力中等至強,主要取決於離子的電價和半徑。由於離子的靜電場為球形對稱,所以離子鍵沒有方向性,也沒有飽和性。
元素周期表中鹼金屬與鹼土金屬元素離子電位低,易於形成正離子,非金屬元素電負性大,易於形成負離子,這些元素相互結合形成典型的離子鍵。以離子鍵結合起來形成的晶體稱為離子晶體。離子晶體中離子被當作球體,力求作最緊密堆積,形成對稱性高的晶體。
(2)共價鍵
同種原子或電負性相差很小的原子結合成分子或晶體時,原子間的鍵合不能用離子鍵的靜電作用力來解釋,而是形成了另一種鍵,即共價鍵。共價鍵的形成是由於原子在相互靠近時,原子軌道相互重置,形成分子軌道,原子核之間的電子雲密度增加,電子雲同時受到兩核的吸引,因而使體系的能量降低。由兩個以上原子共用若干個電子構成的共價鍵稱為多原子共價鍵。共價鍵具有飽和性和方向性,鍵力中等至強,主要取決於原子價、原子間距和極化強度。原子晶體不作最緊密堆積,配位數較低,決定於鍵的飽和性和方向性。
(3)金屬鍵
金屬晶體中的金屬原子最外層電子的電離勢較低,易於脫離原子核的束縛,在整個晶體空間內運動,形成自由電子。它們和晶體中「正離子」構成的體系能有效地降低體系的能量,因而,金屬晶體被描寫為浸泡在自由電子氣中的正離子集合,而金屬正離子和「自由電子」之間的靜電相互作用力被看作是金屬鍵。金屬鍵無飽和性和方向性,鍵力一般不強,主要取決於原子間的距離與自由電子的多少。由此可見金屬鍵一方面和共價鍵類似,靠共用自由電子產生原子間的凝聚力,另一方面又和離子鍵類似,是正負電荷之間的靜電作用力。要從本質上深刻地揭示晶體周期勢場中金屬的本質,必須了解晶體的能帶理論(廖立兵,2000)。金屬晶體通常成最緊密堆積,具有最高的配位數。
(4)分子鍵
分子鍵是一種比離子鍵、共價鍵和金屬鍵弱得多的化學鍵,鍵能比上述3種鍵能小1~2個數量級(約幾個千卡/摩爾),它不會引起分子晶體內任一原子的電子運動狀態出現實質性的改變,是由分子的偶極之間引力相互作用形成,無飽和性和方向性。分子晶體為非球形分子作緊密堆積。
㈧ 化學式之間的鍵有哪些
化學鍵的種類有:離子鍵、共價鍵、金屬鍵。
化學鍵是純凈物分子內或晶體內相鄰兩個或多個原子(或離子)間強烈的相互作用力的統稱。使離子相結合或原子相結合的作用力通稱為化學鍵。
㈨ 有誰知道原子團的化學鍵怎麼表示
原子團是幾種元素的原子以共價鍵或離子鍵結合在一起,形成的一個原子集體,在化學反應中就像一個原子一樣,原子團中原子的結合力,主要是化學鍵的作用力。