導航:首頁 > 化學知識 > 如何識別葯物化學結構式

如何識別葯物化學結構式

發布時間:2022-12-11 00:23:42

Ⅰ 葯物化學的葯物名稱,結構式怎麼記

名稱死記是很難記下來的。最好找一本有機化學,把雜環化合物、甾體兩章書仔細閱讀。這樣懂得了一些基本知識之後,就可以理解為什麼這樣命名了。執業葯師都是選擇題,不用將每個括弧都背下來的。至於結構式,最關鍵的是要大致記得母核是什麼,特徵基團是什麼以及取代在哪一個位置。不用要求自己能達到那種給個名字就能畫出結構式來的境界,這樣是很浪費時間的。 其實葯物化學還相對簡單,除了名稱結構式,就是構效關系了。構效關系是葯物化學的靈魂,很容易出現在多選題里的。

Ⅱ 怎樣查詢葯物化學結構式

所有的葯物說明書上都標明了化學結構式。

Ⅲ 誰有葯物化學物質的化學式和結構式 跟我說下好嗎

1 洗手液: 苯酚 C6H5-OH
2 胃舒平: 氫陽化鋁 Al(OH)3
3 通用名 酮康唑
化學名 1-乙醯基-4[4-[2-(2,4-二氯苯基)-2(1H-咪唑-1-甲基)-1,3二氧戊環-4-甲氧基]苯基]-哌嗪
分子式 C26H28Cl2N4O4
分子量 531.44

自1802年道爾頓提出原子假說,1811年阿伏加德羅又提出分子學說以來,化學一直在原子和分子學說的基礎上發展著。1869年門捷列夫所發現的元素周期律及在此基礎上構成的元素周期表,使化學從而成為一門有著嚴密體系的學科。由於當時對於原子和分子的結構理論還停留在假說的階段,化學家的研究工作主要側重於元素的發現、分析或分離組成復雜的樣品的方法以及新化合物的合成,所以化學的傳統定義中只強調合成和分析兩個方面。這個傳統在基礎化學教育中至今仍然有著深刻的影響。20世紀物理學家對原子結構及有關分子、晶體結構的實驗研究成果和以量子力學為代表的諸多理論研究成果,使晶體、分子與原子結構的測定結果和化學家為分子、晶體所設計和編制的化學式與結構式在元素論的基礎上演化成為化學家的一種學科語言。在此基礎上,合成和分析方法的設計與實踐便從主要依靠化學家的個人經驗和技術的方式轉為同時在理論的指導下的半經驗方式。化學學科發展的階段特點在今天的化學教育體系和課程體系中都可以找到它的痕跡。這個事實說明,在考慮21世紀的化學教育和基礎教育階段的化學課程目標和內容時,不可不研究20世紀的化學現狀,並對其在21世紀的發展前景作出合理的預測,至少也應該對21世紀初的化學學科特點作出有根據的預見和合理的分析。

化學學科的現狀可以從理論和技術兩方面對其目前的水平及問題作一簡單扼要的介紹。

雖然發現元素的工作,早年是化學家和物理學家共同努力的一個領域,但是在元素周期表中的位置逐一被填滿並發現天然存在的元素已經告罄之後,用核反應的方法製造人造元素的工作,幾乎成了物理學家的專利。而以原子為基礎的化學鍵理論的發展,深化了對分子結構(包括晶體和原子的其他聚集態)、性質及反應性能的了解,並喚起對分子及其聚集態體系功能的研究與開發的重視。因此,分子及其聚集態等逐步成為現代化學的主要研究對象。由於合成化學和分析方法的多年積累,加上檢測和分離技術的進步,已經發現並確定了其組成和結構的化合物以及在實驗室里合成出來的新化合物,到20世紀末將超過2 000萬種(1999年12月已達到2 000萬種),其中有一小部分已建成資料庫,但目前資料庫的使用率大約只有10%左右。

利用物理效應和計算機技術發展起來的多種譜學方法和技術,已經達到相當高的水平。例如,利用掃描隧道顯微技術(STM),人們已經能夠探測到原子或分子在固體表面上的排布規律,也可以探測到鹼基對在DNA雙螺旋中的排布情況。水平檢出靈敏度達到10-1 nm的量級,垂直檢出靈敏度達到10-2 nm的量級。在動力學過程中,譜學方法的解析度已經可以滿足由10-15 s到以d(日)為量級的從超快過程到與生物體系有關的極慢過程的研究。在有機合成方面,化學家在合成時似乎已經不再存在禁區,只要預先設定的化學式和結構式是「合理的」,合成的問題就僅在於方法和路線的選擇,以及產率的高低了。藉助於資料庫和專家系統,結合已有的一些經驗規律,計算機輔助設計的方法在葯物化學及材料科學中已經取得很大的成績。近幾年來興起的組合化學方法,通過把中等數學中的概率論及排列組合方法和反應試劑固定化技術結合起來,使具有預期葯效或功能的化合物的合成與篩選的效率提高了幾個量級。在研究對象方面,化學家的視野已大為擴展,由地球擴展到了其他星球和整個宇宙,由各種外場效應對化學反應的影響擴展到在無重力條件下的化學反應等等。這一切成就使得20世紀的化學家的目光更加敏銳和開闊,信心更為堅定,和其他學科之間的互相滲透、互相支持的自覺性也遠非昔日可比。

但是,也應當看到,化學在融入其他學科的同時,存在著過分重視化學物質的合成技巧和它們的功能的偏向,以至於化學家的基礎研究課題,大多是其他學科中的課題,如光合作用,生命起源,針對某種特殊疾病的有效葯物等等。對於化學本身的基礎研究課題反而被疏忽了。我們應當重視對其他學科領域及技術領域的積極參與,但是一門學科如果對本學科的基礎理論不夠重視,不能吸引優秀的研究人員來從事有關的研究工作,它就會失去活力,甚至於失去存在的價值。近年來,化學學習熱情的低迷不振,不能不認為與此有一定關系。只是因為化學人才在就業與薪金方面一直保持著相對於其他自然科學的優勢,才使這個問題沒有進一步激化而已。

20世紀50年代以後,由於量子化學理論和方法的進步與發展,對化學結構理論,特別是化學鍵理論的發展起了重要的促進作用,提高了化學家研究微觀世界的能力。以物理學中的熱力學和統計力學等為基礎發展起來的化學熱力學和化學統計力學等為化學提供了化學平衡理論、化學反應速率理論以及對給定體系的基本熱力學性質的理論估算方法等等。但是應當認為,化學理論的發展速度相對於化學的整體發展速度而言,是不盡如人意的,對此本文不準備展開,只做一般性的討論。

化學在這兩個世紀里所形成的思維方式和評價體系,幾乎沒有太大的變化。化學家對化學是一門實驗性科學的含義往往只從狹義上來理解,因而常常疏忽理性的思維,人們習慣於接受物理學的基本原理與定律,借用物理學和其他技術科學所提供的新技術,在這方面通常表現得非常開放和非常敏感,對於新技術的採用則更為明顯。但是在另一方面,化學家很少對結合化學運動自身的更為基本的規律進行研究,卻是一個不爭的事實。也許門捷列夫的成功啟發了一些科學家,認為用分類、統計和只針對系統內的某些性質找尋規律性(經驗或半經驗的)一類的方法,加上以實驗數據(有限的)為依據,或以實驗數據(有限的)為證據的做法,就成了化學是一門實驗性科學的主要註解,同時可能成為化學家從化學教育中繼承下來的,最傳統的學習和研究方法。

化學運動有沒有本身的規律?現在借用的物理學規律或原理是否真正揭示了物質化學運動的化學本質?這是21世紀化學家們應當認真思考的問題,也是化學教育改革中的一個關鍵問題。

先由常用的化學反應判據來看,熱力學判據是:ΔG<0是體系中有關過程具有自發進行的趨勢或蘊有自發進行的推動力的方向。(這個判據在微觀世界中常以體系能量最低原則的形式出現。)熱力學判據對於平衡體系,線性化學體系來說,顯然是久經考驗,不應懷疑的。但是熱力學判據應用時的條件是必須先確定始態和終態(可以是虛擬的,但必須是確定的)。可是對於一個尚未研究過的化學過程,又如何能夠確定它的終態呢?倘若一個體系在變化後可能達到的終態不止一個,熱力學判據只能告訴我們,其中ΔG<0的數值最小的過程將是最可能的(但未必是最現實的)。例如在生物體的化學變化中,完全分解或氧化成CO2、H2O、N2等時的ΔG應是最小的,但是在很多情況下可能要經過很長的時間才能達到,通常並不是化學變化的第一選擇。大自然里動植物化石的形成過程就是一個例子,農家肥的成熟過程也是一個例子。

現在已經知道,體系的變化往往要經過相當復雜的過程,形成許多所謂的反應通道,表現為產生多種副產物。這種情況在有機化學中十分普遍,而且分子的結構越復雜(分子包括的對稱性元素越多),分子鏈越長,分支越多,結果就越復雜。副產物,異構體,交聯率,分子量分布和介觀物相的差異,原子簇組成的變化等等,皆由化學過程的復雜性所致,可以作為遠非能量最低原理所能概括的重要例證。局部的能量或瞬時結構的判定與推測,現在仍然遵守著一個原則,即能量最低(相對於始態或另一個虛擬態)原則。在這個原則下設定的構象及其有限的變化(即準定態近似),是量子化學計算的基礎。

物理運動中,過程方向是由種種定義明確、物理圖像清晰的推動力所決定的,如萬有引力、電性力、分子間作用力和核子力等。如果把它們直接用於化學過程時,就有著定義模糊,圖像與實際體系並不完全符合的問題。這點在前面提到熱力學問題判據時已談到,不再重復。

例如,H2和O2本來是各自穩定存在的,當混合後經過引發會發生化學反應生成水,已是大家所熟知的事實。為何會發生反應?現在的化學理論提供的基本思路為:一是由過程的ΔG<0告訴我們,生成水後體系的自由能可以變得更低些;二是告訴我們在H2和O2獲得活化能後,是如何發生鍵斷裂和鍵生成過程的,由量子力學方法可以計算出過程中體系的勢能變化(如勢能面或勢能曲線),可以討論反應物分子在反應時應當取何種相對位置(如頭對頭或肩並肩等)對反應可能更為有利等等。

Ⅳ 葯物化學結構式怎麼樣才能又快又好的記住呢

熟能生巧,看來要努力

Ⅳ 請簡述天然葯物化學中提取分離和結構鑒定的方法各有哪些

常見的提取分離的方法有:
1、蒸餾:
它利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。
2、重結晶:
重結晶是將晶體溶於溶劑或熔融以後,又重新從溶液或熔體中結晶的過程。重結晶可以使不純凈的物質獲得純化,或使混合在一起的鹽類彼此分離。其中它是物理化學作用的結果。
3、萃取:
萃取是利用系統中組分在溶劑中有不同的溶解度來分離混合物的單元操作。
4、層析:
也叫柱色譜,是根據樣品混合物中各組分在固定相和流動相中分配系數不同,經多次反復分配將組分分離開來。

結構鑒定的方法主要有:
1、紫外光譜:
分子內部的運動有轉動、振動和電子運動,相應狀態的能量(狀態的本徵值)是量子化的,因此分子具有轉動能級、振動能級和電子能級。通常,分子處於低能量的基態,從外界吸收能量後,能引起分子能級的躍遷。電子能級的躍遷所需能量最大,大致在1~20 eV(電子伏特)之間。
許多有機分子中的價電子躍遷,須吸收波長在200~1000 nm范圍內的光,恰好落在紫外-可見光區域。因此,紫外吸收光譜是由於分子中價電子的躍遷而產生的,也可以稱它為電子光譜。
2、紅外光譜:
在有機物分子中,組成化學鍵或官能團的原子處於不斷振動的狀態,其振動頻率與紅外光的振動頻率相當。所以,用紅外光照射有機物分子時,分子中的化學鍵或官能團可發生振動吸收,不同的化學鍵或官能團吸收頻率不同,在紅外光譜上將處於不同位置,從而可獲得分子中含有何種化學鍵或官能團的信息。
3、質譜:
質譜分析是一種測量離子質荷比(質量-電荷比)的分析方法,其基本原理是使試樣中各組分在離子源中發生電離,生成不同荷質比的帶電荷的離子,經加速電場的作用,形成離子束,進入質量分析器。在質量分析器中,再利用電場和磁場使發生相反的速度色散,將它們分別聚焦而得到質譜圖,從而確定其質量。
4、核磁共振:
氫原子具有磁性,如電磁波照射氫原子核,它能通過共振吸收電磁波能量,發生躍遷。用核磁共振儀可以記錄到有關信號,處在不同環境中的氫原子因產生共振時吸收電磁波的頻率不同,在圖譜上出現的位置也不同,各種氫原子的這種差異被稱為化學位移。利用化學位移,峰面積和積分值以及耦合常數等信息,進而推測其在碳骨架上的位置。
在核磁共振氫譜圖中,特徵峰的數目反映了有機分子中氫原子化學環境的種類;不同特徵峰的強度比(及特徵峰的高度比)反映了不同化學環境氫原子的數目比。

在葯物領域,重結晶、層析是比較常用的提取分離方法,核磁和質譜是最常用的結構鑒定方法。

Ⅵ 哪裡能找到葯物化學上所有的葯的化學式和化學結構

葯典三,中國市面上的葯都是根據上面來的。而且葯物說明書上都必須有化學結構式和化學名,再說教材上都應該有,沒有的話證明只需要了解不需要掌握

Ⅶ 如何快速記憶一下化學結構式,抗生素類

到底該怎樣記化學結構式呢?我認為做到以下幾點就可以達到快速、有效記憶的效果:一、基本化學結構的掌握。葯物化學結構無論多麼復雜,都是由簡單的鏈狀、環狀結構組合拼接而成的,因此如果絲毫不懂基本的化學結構及他們簡單的連接規律,一上來就看葯物結構式,無疑於看鬼畫符,人腦又並並非掃描儀,又何談記憶呢!而葯物結構式中最常見的就是雜環,學葯物化學一定要熟記它們,我曾做過一個總結,大家請看:?雜環化合物大全【葯師學習網路】 ——第5期?。希望對大家會有幫助。一些學員可能化學基礎非常差,連雙鍵、單鍵、苯環、化學式、分子式、結構式都搞不明白,可能學習起來會更有困難,建議大家看一看中學的化學教科書或在網上搜搜相關資料,如果不明白再在答疑板上提問。 二、記憶結構式要按葯物分類來記憶。通常同一類葯物都有相同或相似的母核,比如青黴素類抗生素的基本母核是6-氨基青黴烷酸(6-APA)、頭孢類是7-氨基頭孢霉烷酸(7-ACA)、腎上腺皮質激素的甾環、腎上腺素能激動葯的苯乙胺、喹諾酮類抗生素的喹諾酮等等。知道了這些基本結構,再看結構式就清晰多了。所以當面對一個結構式時,基本上可以先判斷它的基本結構,確定它的分類,再結構它的特徵基團藉以區分和特別記憶。 三、根據特徵基團進行與其它同類葯物結構式的區別記憶。當記憶一個葯物結構式時,不是孤立記憶,而應在熟悉了它的基本母核後,對比其它同類葯物的結構式進區別記憶。如頭孢氨苄與頭孢克洛,它們的基本母核是一樣的,區別在於頭孢克洛3位上是氯而頭孢氨苄3位是甲基,藉以區分,更能清晰記憶,達到事半功倍的效果。

Ⅷ 天然葯物化學結構鑒定題(題目如下)

天然葯物化學成分結構鑒定時常見有哪幾種波譜技術 pH和Eh值影響土壤對砷的吸附, pH 值高, 土壤砷吸附量減少而水溶性砷增加; 土壤在氧化條件下, 大部分是砷酸, 砷酸易被膠體吸附, 而增加土壤固砷量。隨Eh降低, 砷酸轉化為亞砷酸, 可促進砷的可溶性, 增加砷害。植物在生長過程中, 吸收有機態砷後可在體內逐漸降解為無機態砷。砷可通過植物根系及葉片的吸收並轉移至體內各部分, 砷主要集中在生長旺盛器官。 作物根莖葉、 籽粒含砷量差異很大, 如水稻含砷量分布順序是稻根 >莖葉 > 谷殼 > 糙米, 呈自下而上遞降變化規律。砷中毒可影響作物生長發育, 砷對植物危害的最初症狀是葉片捲曲枯萎, 進一步是根系發育受阻, 最後是植物根、 莖、 葉全部枯死。砷對人體危害很大, 在體內有明顯的蓄積性, 它能使紅血球溶解, 破壞正常的生理功能, 並具有遺傳性、 致癌性和致畸性等。

閱讀全文

與如何識別葯物化學結構式相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:971
武大的分析化學怎麼樣 瀏覽:1247
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057