Ⅰ 化學誘變劑的類別有哪些
很多 . 烷基磺酸鹽和烷基硫酸鹽 代表葯劑:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES) 2. 亞硝基烷基化合物 代表葯劑:亞硝基乙基脲(NEH)、N-亞硝基-N-乙基脲烷(NEU) 3. 次乙胺和環氧乙烷類 代表葯劑:乙烯亞胺(EI) 4. 芥子氣類 氮芥類、硫芥類 烷化劑的作用機制--烷化作用 作用重點是核酸,導致DNA斷裂、缺失或修補。
Ⅱ 誘變的化學誘變
化學誘變劑主要有烷化劑(包括EMS、EI、NEU、NMU、DES、MNNG、NTG等),天然鹼基類似物,氯化鋰、亞硝基化合物、疊氮化物、鹼基類似物、抗生素、羥胺和吖啶等嵌入染料。 烷化劑通常帶有1個或多個活性烷基,此基團能夠轉移到其它電子密度高的分子上去,使鹼基許多位置上增加了烷基,從而在多方面改變氫鍵的能力。例如EMS被證明是最為有效而且負面影響小的誘變劑。與其他烷化誘變劑類似,是通過與核苷酸中的磷酸、嘌呤和嘧啶等分子直接反應來誘發突變。EMS誘發的突變主要通過兩個步驟來完成,首先鳥嘌呤的O6位置被烷基化,成為一個帶正電荷的季銨基團,從而發生兩種遺傳效應:一是烷化的鳥嘌呤與胸腺嘧啶配對,代替胞嘧啶,發生轉換型的突變;二是由於鳥嘌呤的N27烷基活化,糖苷鍵斷裂造成脫嘌而後在DNA復制過程中,烷基化鳥嘌呤與胸腺嘧啶配對,導致鹼基替換,即G∶C變為A∶T。當然,化學誘變存在著染色體結構和數量方面的誘導變異,但這種單一鹼基對改變而形成的點突變仍是化學誘變的主要形式。另外,誘變劑也可與核苷結構的磷酸反應,形成酯類而將核苷酸從磷酸與糖分子之間切斷,產生染色體的缺失。這些DNA結構上的變化都可能促使不表達的基因或區段被激活,而表現出被掩蓋的性狀。
另外NTG也是最有效,用得最廣泛的化學誘變劑之一.依靠NTG誘發的突變主要是GC—AT轉換,另外還有小范圍切除、移碼突變及GC對的缺失.在自然條件下NTG容易分解,而在酸性(PH5.5)條件下會產生HNO2.雖然HNO2本身就是誘變劑,但在NTG有活性時(PH6~9),它卻無誘變效果.在鹼性條件下,NTG會形成重氮甲烷(CH2N2),它是引起致死和突變的主要原因.它的效應很可能是CH2N2對DNA的烷化作用引起的[6]。 如吖啶橙、溴化乙錠(EB)等可插入到DNA鹼基對之間的染料,被稱作嵌入燃料,也是較強的誘變劑,能造成兩條鏈錯位或移碼突變。
Ⅲ 高中生物 化學誘變劑
PEG 聚乙二醇 用於誘導產生雜交細胞 我想你指的應該是這個
Ⅳ 主要的物理和化學誘變劑----有哪些
誘導變異?
物理:X射線,γ射線,紫外線
化學:亞硝酸鹽,烷化劑,鹼基類似物,抗生素等化學葯物
Ⅳ 誘變育種所用得化學葯劑是什麼
誘變育種是指用物理、化學因素誘導動植物的遺傳特性發生變異,再從變異群體中選擇符合人們某種要求的單株/個體,進而培育成新的品種或種質的育種方法。它是繼選擇育種和雜交育種之後發展起來的一項現代育種技術。
化學誘變除能引起基因突變外,還具有和輻射相類似的生物學效應,如引起染色體斷裂等,常用於處理遲發突變,並對某特定的基因或核酸有選擇性作用。化學誘變劑主要有:①烷化劑。這類物質含有1個或多個活躍的烷基,能轉移到電子密度較高的分子中去,置換其他分子中的氫原子而使鹼基改變。常用的有甲基磺酸乙酯(EMS)、乙烯亞胺(EI)、亞硝基乙基脲烷(NEU)、亞硝基甲基脲烷(NMU)、硫酸二乙酯(DES)等。②核酸鹼基類似物。為一類與DNA鹼基相類似的化合物。滲入DNA後,可使DNA復制發生配對上的錯誤。常用的有5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR)等。③抗生素。如重氮絲氨酸、絲裂毒素C等,具有破壞DNA和核酸的能力,從而可造成染色體斷裂。
化學誘變主要用於處理種子,其次為處理植株。種子處理時,先在水中浸泡一定時間,或以干種子直接浸在一定濃度的誘變劑溶液中處理一定時間,水洗後立即播種,或先將種子乾燥、貯藏,以後播種。植株處理時,簡單的方法是在莖稈上切一淺口,用脫脂棉把誘變劑溶液引入植物體,也可對需要處理的器官進行注射或塗抹。應用的化學誘變劑濃度要適當(表 2)。處理時間以使受處理的器官、組織完成水合作用和能被誘變劑所浸透為度。化學誘變劑大都是潛在的致癌物質,使用時必須謹慎。
Ⅵ 常見誘變劑的類型有哪些,各有什麼特點
亞硝酸 能使嘌呤或嘧啶脫氨,改變核酸結構和性質,造成DNA復制紊亂。HNO2還能造成DNA雙鏈間的交聯而引起遺傳效應。
疊氮化鈉(NaN3) 是一種呼吸抑制劑,能引起基因突變,可獲得較高的突變頻率,而且無殘毒。
Ⅶ 微生物育種的化學誘變
2.1.1 烷化劑
烷化劑能與一個或幾個核酸鹼基反應,引起DNA 復制時鹼基配對的轉換而發生遺傳變異,常用的烷化劑有甲基磺酸乙酯、亞硝基胍、乙烯亞胺、硫酸二乙酯等。
甲基磺酸乙酯(ethylmethane sulphonate,EMS) 是最常用的烷化劑,誘變率很高。它誘導的突變株大多數是點突變,該物質具有強烈致癌性和揮發性,可用5%硫代硫酸鈉作為終止劑和解毒劑。
N- 甲基- N'- 硝基- N- 亞硝基胍(NTG) 是一種超誘變劑,應用廣泛,但有一定毒性,操作時應該注意。在鹼性條件下,NTG 會形成重氮甲烷(CH2N2),它是引起致死和突變的主要原因。它的效應很可能是CH2N2 對DNA 的烷化作用引起的[2]。
硫酸二乙酯(DMS) 也很常用,但由於毒性太強,目前很少使用。乙烯亞胺,生產的較少,很難買到。使用濃度0.0001%~0.1%,高度致癌性,使用時需要使用緩沖液配置。
2.1.2 鹼基類似物
鹼基類似物分子結構類似天然鹼基,可以摻入到DNA 分子中導致DNA 復制時產生錯配,mRNA 轉錄紊亂,功能蛋白重組,表型改變。該類物質毒性相對較小,但負誘變率很高,往往不易得到好的突變體。主要有5- 氟尿嘧啶(5- FU) 、5- 溴尿嘧啶(5- BU) 、6- 氯嘌呤等。程世清等[25]用5- BU 對產色素菌(分枝桿菌T17- 2- 39) 細胞進行誘變,生物量平均提高22.5%.
2.1.3 無機化合物
誘變效果一般,危險性較小。常用的有氯化鋰,白色結晶,使用時配成0.1%~0.5%的溶液,或者可以直接加到誘變固體培養基中,作用時間為30min~2d。亞硝酸易分解,所以現配現用。常用亞硝酸鈉和鹽酸製取,將亞硝酸鈉配成0.01~0.1mol/L 的濃度,使用時加入等濃度等體積的鹽酸即可。
2.1.4 其他
鹽酸羥胺,一種還原劑,作用於C 上,使G- C 變為A- T。也較常用,使用濃度為0.1%~0.5%,作用時間60min~2h。
此外,誘變時將兩種或多種誘變因子復合使用,或者重復使用同一種誘變因子,效果更佳。顧正華等[7]以谷氨酸棒桿菌ATCC- 13761 為出發菌株,經DMS 和NTG 多次誘變處理,獲得一株L- 組氨酸產生菌。
2、誘變劑
2.1 誘變劑的選擇
在選擇誘變劑時,需要注意誘變劑的專一性,即某一誘變劑或誘變處理優先使基因組的某些部分發生突變而別的部分即使有也很少發生突變。對誘變劑專一性的分子基礎不十分了解萬盡管有關的修復途徑必定對此有影響,但它們的關系並不那麼簡單,其它各種因素,包括誘變處理的環境條件也能影響突變類型。
工業遺傳學家很難正確地預言改良某一菌種時需要何種類型的分子水平的突變。因此,為了產生類型盡可能多的突變體,最適當的方法是採用幾種互補類型的誘變處理。遠紫外無疑是所有誘變劑中最為合適的,似乎可以誘導所有已知的損傷類型。採取有效、安全的預防方法也很容易。在化學誘變劑中,液體試劑比粉末試劑更易進行安全操作。的另一個不利因素是它有產生緊密連鎖的突變叢的趨勢,盡管這種效應在某些體系中能成為有利條件。最後,必須認識到可能某些特異菌系用某些誘變劑是不能被誘變的。當然這一點通過測定易檢出的突變體,如抗葯性突變體或原養型回復突變體的誘變動力學可以相當容易地得到驗證。[8]
2.2 誘變劑的劑量
從隨機篩選的最佳效果看,誘變劑的最適劑量就是在用於篩選的存活群體中得到最高比例的所需要的突變體,因為這會使在測定效價的階段更省力。
因此在菌株改良以前,為了決定所用誘變劑的最適劑量,並為突變性的增強技術打下基礎,聰明的做法通常是測定不同誘變劑處理不同菌種時的突變動力學。用高單位突變本身來測定最適劑量有時是不可能的,因為這種突變的檢測很困難。但如使用容易檢出的標記如耐葯標記,只要估計到方法的局限性,還是可以提供一些有價值的資料的。[9]
Ⅷ 化學誘變劑的定義
指能夠引起突變的化學物質。已知的有烷化劑、鹼基類似物(base analog)、羥胺(hydroxylamine)、吖啶色素等。
Ⅸ 誘變育種中常用的誘變劑
如果是物理因子誘變,那應當有紫外線(uv)、χ一射線、г一射線、快中子、以及α一射線、β一射線、激光和超聲波等,
化學誘變劑有 烷化劑,移碼突變劑,鹼基類似物(如5一氟尿嘧啶(5-FU)、5一溴尿嘧啶(5-BU)、6-氯嘌呤等),還有復合因子誘變,採用兩種或多種誘變劑同時或先後作用,或者同一誘變劑重復使用的方法,甚至可以採用物理誘變和化學誘變相搭配的復合處理方法。目前普遍認為,復合誘變較單一誘變的效果好。