導航:首頁 > 化學知識 > 化學有機核磁共振的怎麼看

化學有機核磁共振的怎麼看

發布時間:2023-03-11 05:29:34

⑴ 高中化學,如何通過核磁共振氫譜圖判斷有機物是哪一種(請詳細講解一下)

處於不同化學環境的氫原子因產生共振時吸收電磁波的頻率不同,相應的信號在譜圖中出現位置也不同。這個核磁共振氫譜有四種氫,數目之比是2:2:1:1。。

⑵ 核磁共振氫譜圖怎麼看

核磁共振氫譜(也稱氫譜, 或者1H譜) 是一種將分子中氫-1的核磁共振效應體現於核磁共振波譜法中的應用。可用來確定分子結構。 當樣品中含有氫,特別是同位素氫-1的時候,核磁共振氫譜可被用來確定分子的結構。氫-1原子也被稱之為氕。 簡單的氫譜來自於含有樣本的溶液。為了避免溶劑中的質子的干擾,制備樣本時通常使用氘代溶劑(氘=2H, 通常用D表示),例如:氘代水D2O,氘代丙酮(CD3)2CO,氘代甲醇CD3OD,氘代二甲亞碸(CD3)2SO和氘代氯仿CDCl3。同時,一些不含氫的溶劑,例如四氯化碳CCl4和二硫化碳CS2,也可被用於制備測試樣品。 歷史上,氘代溶劑中常含有少量的(通常0.1%)四甲基硅烷(TMS)作為內標物來校準化學位移。TMS是正四面體分子,其中所有的氫原子化學等價,在譜圖中顯示為一個單峰,峰的位置被定義為化學位移等於0ppm 。TMS易於揮發,這樣有利於樣品的還原。現代的核磁儀器可以以氘代溶劑中殘余的氫-1(如:CDCl3中含有0.01% CHCl3)峰作為參照,因此現在的氘代試劑中通常已經不再添加TMS。 氘代溶劑的應用允許核磁共振儀磁場強度的自然漂移可以被氘頻率-磁場鎖定(也被描述為氘鎖定或者磁場鎖定)所抵消。為了實現氘鎖定,核磁共振儀監視著溶液中氘信號的共振頻率,通過對的調整來保持共振頻率的恆定。另外,氘信號也可以被用來更加准確的定義0ppm,這是因為氘代溶劑的共振頻率以及其與TMS的共振頻率之差都是已知的。 大部分有機化合物的核磁共振氫譜中的表徵是通過介於+14pm到-4ppm范圍間化學位移和自旋偶合來表達的。質子峰的積分曲線反映了它的豐度。

⑶ 核磁共振氫譜怎麼看

化學位移、偶合常數及峰面積積分曲線分別提供含氫官能團、核間關系及氫分布等三方面的信息。中:

(1)峰的數目:標志分子中磁不等價質子的種類;

(2)峰的強度(面積):每類質子的數目(相對);

(3)峰的位移(δ):每類質子所處的化學環境;

(4)峰的裂分數:相鄰碳原子上質子數;

(5)偶合常數(J):確定化合物構型。

(3)化學有機核磁共振的怎麼看擴展閱讀:

簡單的氫譜來自於含有樣本的溶液。為了避免溶劑中的質子的干擾,制備樣本時通常使用氘代溶劑(氘=2H, 通常用D表示),例如:氘代水D2O,氘代丙酮(CD3)2CO,氘代甲醇CD3OD,氘代二甲亞碸(CD3)2SO和氘代氯仿CDCl3。同時,一些不含氫的溶劑,例如四氯化碳CCl4和二硫化碳CS2,也可被用於制備測試樣品。

⑷ 如何看核磁共振譜

核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,我們可以進行分子科學的研究,如分子結構,動態等。

核磁共振的原理核磁共振現象來源於原子核的自旋角動量在外加磁場作用下的進動。

根據量子力學原理,原子核與電子一樣,也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數決定,實驗結果顯示,不同類型的原子核自旋量子數也不同:

1.質子數和中子數均為偶數的原子核,自旋量子數為0
2.質量數為奇數的原子核,自旋量子數為半整數
3.質量數為偶數,質子數與中子數為奇數的原子核,自旋量子數為整數

由於原子核攜帶電荷,當原子核自旋時,會由自旋產生一個磁矩,這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動量成正比。將原子核置於外加磁場中,若原子核磁矩與外加磁場方向不同,則原子核磁矩會繞外磁場方向旋轉,這一現象類似陀螺在旋轉過程中轉動軸的擺動,稱為進動。進動具有能量也具有一定的頻率。

原子核進動的頻率由外加磁場的強度和原子核本身的性質決定,也就是說,對於某一特定原子,在一定強度的的外加磁場中,其原子核自旋進動的頻率是固定不變的。

原子核發生進動的能量與磁場、原子核磁矩、以及磁矩與磁場的夾角相關,根據量子力學原理,原子核磁矩與外加磁場之間的夾角並不是連續分布的,而是由原子核的磁量子數決定的,原子核磁矩的方向只能在這些磁量子數之間跳躍,而不能平滑的變化,這樣就形成了一系列的能級。當原子核在外加磁場中接受其他來源的能量輸入後,就會發生能級躍遷,也就是原子核磁矩與外加磁場的夾角會發生變化。這種能級躍遷是獲取核磁共振信號的基礎。

為了讓原子核自旋的進動發生能級躍遷,需要為原子核提供躍遷所需要的能量,這一能量通常是通過外加射頻場來提供的。根據物理學原理當外加射頻場的頻率與原子核自旋進動的頻率相同的時候,射頻場的能量才能夠有效地被原子核吸收,為能級躍遷提供助力。因此某種特定的原子核,在給定的外加磁場中,

核磁共振波譜法(Nuclear Magnetic Resonance Spectros, NMR )NMR是研究原子核對射頻輻射(Radio-frequency Radiation)的吸收,它是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,有時亦可進行定量分析。

香草醛的核磁共振譜 根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定: 1)中子數和質子數均為偶數的原子核,自旋量子數為0; 2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2); 3)中子數為偶數,質子數為奇數的原子核,自旋量子數為整數(如, 核磁共振譜
1, 2, 3)。 迄今為止,只有自旋量子數等於1/2的原子核,其核磁共振信號才能夠被人們利用,經常為人們所利用的原子核有: 1H、11B、13C、17O、19F、31P 由於原子核攜帶電荷,當原子核自旋時,會產生一個磁矩。這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動量成正比。將原子核置於外加磁場中,若原子核磁矩與外加磁場方向不同,則原子核磁矩會繞外磁場方向旋轉,這一現象類似陀螺在旋轉過程中轉動軸的擺動,稱為進動。進動具有能量也具有一定的頻率。進動頻率又稱Larmor頻率: υ=γB/2π γ為磁旋比,B是外加磁場的強度。磁旋比γ是一個基本的核常數。可見,原子核進動的頻率由外加磁場的強度和原子核本身的性質決定,也就是說,對於某一特定原子,在已知強度的的外加磁場中,其原子核自旋進動的頻率是固定不變的。 原子核發生進動的能量與磁場、原子核磁矩、以及磁矩與磁場的夾角相關,根據量子力學原理,自旋量子數為I的核在外加磁場中有2I+1個不同的取向,原子核磁矩的方向只能在這些磁量子數之間跳躍,而不能平滑的變化,這樣就形成了一系列的能級。這些能級的能量為: E= -γhmB/2π 式中,h是Planck常數(普朗克常數)(6.626x10-34);m 是磁量子數,取值范圍從-I到+I,即m= -I, -I+1, … I-1, I。 當原子核在外加磁場中接受其他來源的能量輸入後,就會發生能級躍遷,也就是原子核磁矩與外加磁場的夾角會發生變化。根據選擇定則,能級的躍遷只能發生在Δm=±1之間,即在相鄰的兩個能級間躍遷。這種能級躍遷是獲取核磁共振信號的基礎。根據量子力學,躍遷所需要的能量變化: ΔE=γhB/2π 為了讓原子核自旋的進動發生能級躍遷,需要為原子核提供躍遷所需要的能量,這一能量通常是通過外加射頻場來提供的。當外加射頻場的頻率與原子核自旋進動的頻率相同的時候,即入射光子的頻率與Larmor頻率γ相符時,射頻場的能量才能夠有效地被原子核吸收,為能級躍遷提供助力。因此某種特定的原子核,在給定的外加磁場中,只吸收某一特定頻率射頻場提供的能量,這樣就形成了一個核磁共振信號。

核磁共振譜 在強磁場中,原子核發生能級分裂(能級極小:在1.41T磁場中,磁能級差約為25′10-3J),當吸收外來電磁輻射(10-9-10-10nm,4-900MHz)時,將發生核能級的躍遷----產生所謂NMR現象。射頻輻射─原子核(強磁場下,能級分裂)-----吸收──能級躍遷──NMR,與UV-vis和紅外光譜法類似,NMR也屬於吸收光譜,只是研究的對象是處於強磁場中的原子核對射頻輻 核磁共振譜
射的吸收。 1924年Pauli預言了NMR的基本理論:有些核同時具有自旋和磁量子數,這些核在磁場中會發生分裂;1946年,Harvard大學的Purcel和Stanford大學的Bloch各自首次發現並證實NMR現象,並於1952年分享了Nobel獎;1953年Varian開始商用儀器開發,並於同年做出了第一台高分辨NMR儀。1956年,Knight發現元素所處的化學環境對NMR信號有影響,而這一影響與物質分子結構有關。 核磁共振現象於1946年由E.M.珀塞耳和F.布洛赫等人發現。核磁共振迅速發展成為測定有機化合物結構的有力工具。目前核磁共振與其他儀器配合,已鑒定了十幾萬種化合物。70年代以來,使用強磁場超導核磁共振儀,大大提高了儀器靈敏度,在生物學領域的應用迅速擴展。脈沖傅里葉變換核磁共振儀使得C、N等的核磁共振得到了廣泛應用。計算機解譜技術使復雜譜圖的分析成為可能。測量固體樣品的高分辨技術則是尚待解決的重大課題。

⑸ 有機物的核磁共振氫譜圖有幾個吸收峰要怎麼看核磁共振氫譜圖吸收峰又是什麼

氫原子具有磁性,如電磁波照射氫原子核,它能通過共振吸收電磁波能量,發生躍遷。用核磁共振儀可以記錄到有關信號,處在不同環境中的氫原子因產生共振時吸收電磁波的頻率不同,在圖譜上出現的位置也不同,利用化學位移,峰面積和積分值以及耦合常數等信息,進而推測其在碳骨架上的位置。 氫原子在分子中的化學環境不同,而顯示出不同的吸收峰,峰與峰之間的差距被稱作化學位移;化學位移的大小,可採用一個標准化合物為原點,測出峰與原點的距離,就是該峰的化學位移。核磁共振氫譜中,峰的數量就是氫的化學環境的數量,而峰的相對高度,就是對應的處於某種化學環境中的氫原子的數量。使用核磁共振儀自帶的自動積分儀可以對各峰的面積進行自動積分,得到的數值用階梯式積分曲線高度表示出來。不同化學環境中的H,其峰的位置是不同的。峰的強度(也稱為面積)之比代表不同環境H的數目比。 例:CH3CH2OH中,有3種H,則有3個峰,強度比為:3:2:1。 CH3OCH3中,只有一種H,則有1個峰。 CH2=CH-CH3中,有三種H,個數比為:2:1:3 一氯苯中:有3種H,個數比:2:2:1 CH3COOCH3中有2種H,個數比3:3或1:1

⑹ 【高中化學】核磁共振氫譜圖,紅外光譜圖,質譜圖怎麼看

核磁共振氫譜是判斷等效氫種數及等效氫個數之比的。有幾個峰,就有幾種氫;峰面積之比就是等效氫個數之比。
紅外光譜主要是檢測某些化學鍵或官能團的,高中不需掌握,題目會告訴。
質譜是判斷分子片段的,此外,質荷比最大的就是該分子的摩爾質量。

⑺ 核磁共振譜圖是怎樣看的

核磁共振氫譜分析的一般步驟

核磁共振氫譜的分析大體上可以分為以
下三個步驟:
(1)
看峰的位置(即化學位移)和峰的面
積(即氫原子數目):應用化學位移的知
識,結合譜峰面積,可以確定(或大致確
定)化合物中含氫官能團的種類。

5.1
核磁共振氫譜分析的一般步驟

(2)
看峰的形狀(即各個峰的偶合裂分情
況):應用n
1規律或二級偶合裂分的知識,
可確定(或大致確定)分子中基團和基團
間的相互關系,區分出自旋體系的種類。
5.1
核磁共振氫譜分析的一般步驟

(3)
計算偶合常數:應用偶合常數的知識,
可以確定分子的立體構型等。

⑻ 高中化學:如何判斷有機物在核磁共振氫譜中有幾個波峰什麼叫處在不同化學環境中的氫(如間二甲苯)。

按道理來說,有機物中的連在C上的H應該都是一樣的,因為他們都是C-H化學鍵。

但是實際上不是這樣的,因為C-H上的那個C可能連有不一樣的基團,所以會產生化學環境不同。

對於烷烴來說都是飽和的結構,有幾點需要明白就行了

第一,連在同一個C上的H的化學環境相同,

比如R1-CH2-R2不管R1R2連的什麼東西,CH2的兩個H是一樣的,核磁共振就是一個峰。

第二,對稱結構的H的化學環境相同,

比如CH3CH2CH2CH2CH3

12321

這個分子就有3種H,應為同連在一個C上的不管CH2還是CH3上的2個H或者3個H都是一樣的,但是不同的CH2是不是一樣,就要看是不是對稱了,如果對稱就是一種H,如果不對稱就是兩種了

不如CH3CH2CH2CH2CH2Br,這個分子不對稱

12345

就有五種H了。

總之,就是看C鏈是不是對稱。

對於間二甲苯

如圖

是一個對稱結構有4種H

不明白Hi

閱讀全文

與化學有機核磁共振的怎麼看相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:660
乙酸乙酯化學式怎麼算 瀏覽:1330
沈陽初中的數學是什麼版本的 瀏覽:1267
華為手機家人共享如何查看地理位置 瀏覽:954
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:805
數學c什麼意思是什麼意思是什麼 瀏覽:1321
中考初中地理如何補 瀏覽:1217
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:628
數學奧數卡怎麼辦 瀏覽:1297
如何回答地理是什麼 瀏覽:949
win7如何刪除電腦文件瀏覽歷史 瀏覽:981
大學物理實驗干什麼用的到 瀏覽:1402
二年級上冊數學框框怎麼填 瀏覽:1611
西安瑞禧生物科技有限公司怎麼樣 瀏覽:753
武大的分析化學怎麼樣 瀏覽:1169
ige電化學發光偏高怎麼辦 瀏覽:1259
學而思初中英語和語文怎麼樣 瀏覽:1553
下列哪個水飛薊素化學結構 瀏覽:1348
化學理學哪些專業好 瀏覽:1414
數學中的棱的意思是什麼 瀏覽:970