1. 怎樣判斷單鍵,雙鍵,叄鍵,共價鍵,極性鍵,非極性鍵,超詳細那種。
單鍵,雙鍵,叄鍵都屬於共價鍵。
單鍵就是一對共用電子對形成的共價鍵
雙鍵就是兩對共用電子對形成的共價鍵
三鍵就是三對共用電子對形成的共價鍵
共價鍵
共價鍵是常見化學鍵的一種,兩個或多個原子共同使用它們的外層電子,在理想情況下達到電子飽和的狀態,由此組成比較穩定和堅固的化學結構叫做共價鍵。與離子鍵不同的是進入共價鍵的原子向外不顯示電荷,因為它們並沒有獲得或損失電子。
例如HCl H原子的最外層一個電子和Cl原子的最外層7個電子中的單電子構成了一對共用電子對,H和Cl都沒有得失電子,只是相互共用。
極性鍵:
在化合物分子中,不同種原子形成的共價鍵,由於兩個原子吸引電子的能力不同,共用電子對必然偏向吸引電子能力較強的原子一方,因而吸引電子能力較弱的原子一方相對的顯正電性,這樣的共價鍵叫做極性共價鍵,簡稱極性鍵。例如H-Cl
非極性鍵
在單質分子中,同種原子形成共價鍵,兩個原子吸引電子的能力相同,共用電子對不偏向任何一個原子,因此成鍵的原子都不顯電性。這樣的共價鍵叫做非極性共價鍵,簡稱非極性鍵。
例如F-F
2. 如何判斷單鍵雙鍵三鍵
第一、首先有VESPR理論,高中化學書上介紹的,就是用VSEPR算出中心原子的價層電子對數,最簡便的演算法是加法,即中心原子價層電子對數n=(中心原子價電子數+配位原子提供價穗純電子數-基團所帶電荷代數值)/2.其中配位原子是H和X則提供1個價電子,O族元素不提供,N族元素提供-1個電子.
n=2,sp雜化,直線型
n=3,sp3雜化,平面三角形
以此類推
注意這是價層電子對的構型不是分子構型,分子構型則考慮配位原子的數量,
例如SO2是sp3雜化,但只有2O因此是折線形
I3-是sp3d雜化,但只有2I因此是直線形
第二、分子軌道理論,分子軌道理論(MO理論)是處理雙原子分子[1]及多原子分子結構的一種有效的近似方法,是化學鍵理論的重要內容.它與價鍵理論不同,後者著重於用原子軌道的重組雜化成鍵來理解化學,而前者則注重於分子軌道的認知,即認為分子中的電子圍繞整個分子運動.
分子軌道理論的要點:
1.原子在形成分子時,所有電子都有貢獻,分子中的電子不再從屬於某個原子,而是在整個分子空間范圍內運動.在分子中電子的空間運動狀態可用相應的分子軌道波函數ψ(稱為分子軌道)來描述.分子軌道和原子帶族吵軌道的主要區別在於:(1)在原子中,電子的運動只受 1個原子核的作用,原子軌道是單核系統;而在分子中,電子則在所有原子核勢場作用下運動,分子軌道是多核系統.(2)原子軌道的名稱用s、p、d…符號表示,而分子軌道的名稱則相應地用σ、π、δ…符號表示.
2.分子軌道可以由分子中原子軌道波函數的線性組合(linear combination of atomic orbitals,LCAO)而得到.幾個原子軌道可組合成幾個分子軌道,其中有一半分子軌道分別由正負符號相同的兩個原子軌道疊加而成,兩核間電子的概率密度增大,其能量較原來的原子軌道能量低,有利於成鍵,稱為成鍵分子軌道(bonding molecular orbital),如σ、π軌道(軸對稱軌道);另一半分子軌道分別由正負符號不同的兩個原子軌道疊加而成,兩核間電子的概率密度很小,其能量較原來的原子軌道能量高,不利於成鍵,稱為反鍵分子軌道(antibonding molecular orbital),如 σ*、π* 軌道(鏡面對稱軌道,反鍵軌道的符號上常加「*」以與成鍵軌道區別). 若組合得到的分子軌道的能量跟組合前的原子軌道能量沒有明顯差別,所得的分子軌道叫做非鍵分子軌道.
3.原子軌道線性組合的原則(分子軌道是由原子軌道線性組合而得的):
(1)對稱性匹配原則
只有對稱性匹配的原子軌道才能組合成分子軌道,這稱為對稱性匹配原則.
原子軌道有s、p、d等各種類型,從它們的角度分布函數的幾何圖形可以看出,它們對於某些點、線、面等有著不同的空間對稱性.對稱性是否匹配,可根據兩個原子軌道的角度分布圖中波瓣的正、負號對於鍵軸(設為x軸)或對於含鍵軸的某一平面的對稱性決定.
符合對稱性匹配原則的幾種簡單的原子軌道組合是,(對 x軸) s-s、s-px 、px-px 組成σ分子軌道;(對 xy平面)py-py 、pz-pz 組成π分子軌道.對稱性匹配的兩原子軌道組合成分子軌道時,因波瓣符號的異同,有兩種組合方式:波瓣符號相同(即++重疊或--重疊)的兩原子軌道組合成成鍵分子軌道;波瓣符號相反(即+-重疊)的兩原子軌道組合成反鍵分子軌道.
(2)能量近似原則
在對稱性匹配的原子軌道中,只有能量相近的原子軌道才能組合成有效的分子軌道,而且能量愈相近愈好,這稱為能蠢侍量近似原則.
(3)軌道最大重疊原則
對稱性匹配的兩個原子軌道進行線性組合時,其重疊程度愈大,則組合成的分子軌道的能量愈低,所形成的化學鍵愈牢固,這稱為軌道最大重疊原則.在上述三條原則中,對稱性匹配原則是首要的,它決定原子軌道有無組合成分子軌道的可能性.能量近似原則和軌道最大重疊原則是在符合對稱性匹配原則的前提下,決定分子軌道組合效率的問題.
4.電子在分子軌道中的排布也遵守原子軌道電子排布的同樣原則,即Pauli不相容原理、能量最低原理和Hund規則.具體排布時,應先知道分子軌道的能級順序.目前這個順序主要藉助於分子光譜實驗來確定.
5.在分子軌道理論中,用鍵級(bond order)表示鍵的牢固程度.鍵級的定義是:
鍵級 = (成鍵軌道上的電子數 - 反鍵軌道上的電子數)/2
鍵級也可以是分數.一般說來,鍵級愈高,鍵愈穩定;鍵級為零,則表明原子不可能結合成分子,鍵級越小(反鍵數越多),鍵長越大.
6.鍵能:在絕對零度下,將處於基態的雙分子AB拆開也處於基態的A原子和B原子時,所需要的能量叫AB分子的鍵離解能,常用符號D(A-B)來表示.
7.鍵角:鍵和鍵的夾角.如果已知分子的鍵長和鍵角,則分子的幾何構型就確定了.
第三、等電子體解法,指價電子數和原子數(氫等輕原子不計在內)相同的分子、離子或基團.有些等電子體化學鍵和構型類似.可用以推測某些物質的構型和預示新化合物的合成和結構.例如,N2、CO和NO+互為等電子體.它們都有一個σ鍵和兩個π鍵,且都有空的反鍵π*軌道.根據金屬羰基配位化合物的大量存在,預示雙氮配位化合物也應存在,後來果真實現,且雙氮、羰基、亞硝醯配位化合物的化學鍵和結構有許多類似之處.又如BH-和CH基團互為等電子體,繼硼烷之後合成了大量的碳硼烷,且CH取代BH-後結構不變.
第四、價鍵理論.價鍵理論將離子晶體或化學體系中基本的實體稱作原子(正或負離子),原子具有小整數的酸價(正值)或鹼價(負值),並以若干化學鍵與近鄰原子相連(鍵數又稱配位數).鍵價理論認為:原子的價將按一定比例分配允它所參與的諸鍵上,使每個鍵均具有一定的鍵價S,並符合價和規則,即鍵價之和等於原子價.根據鍵價-鍵長關聯可由實測鍵長算出鍵價.
我能想到的暫時就這些了,以後想到在補充吧~
3. 化學 單鍵雙鍵叄鍵是什麼意思怎麼判斷
每個化學式中的原子最外層電子數為8時(氫為2),該分子才能穩定。氫原子最外層只有一個電子,2個氫原子各提供一個電子,配對成共價單鍵,形成氫分子。氧最外層為6電子,達到8電子的穩定狀態,還需要兩個,故每個氧原子提供2個電子形成共價雙鍵,同理,氮最外層5電子,達到8還需要3個電子,所以形成3個配對的共價鍵,三鍵。
4. 化學單雙鍵區別
單鍵手碰敗:兩原子間有一共用電子對;
雙鍵:兩原子間有兩共用電子對。畢顫
在結構吵汪式中可以輕易的辨別,最主要還是根據8電子穩定及雜化類型等判斷
5. 如何判斷單鍵雙鍵三鍵
VSEPR算出中心原子的價層配皮御電子對數,最簡便的演算法是加法,即中心原子價層電子對數n=(中心原子價電子數+配位原子提供價電子數-基團所帶電荷代數值)。2.其中配握磨位原子是H和X則提供1個價電子,O族元素不提供,N族元素提供-1個電子,n=2,sp雜化,直線型,n=3,sp3雜化,平面三角形。
共價鍵
1.共價鍵(Covalent Bond)是原子間通過共用電子對(電子雲重疊)而形成的相互作用。形成重疊電子雲的電子在所有成鍵的原子周圍運動。一個原子有幾個未成對電子,便可以和幾個培岩自旋方向相反的電子配對成鍵,共價鍵飽和性的產生是由於電子雲重疊(電子配對)時仍然遵循泡利不相容原理。電子雲重疊只能在一定的方向上發生重疊,而不能隨意發生重疊。共價鍵方向性的產生是由於形成共價鍵時,電子雲重疊的區域越大,形成的共價鍵越穩定,所以,形成共價鍵時總是沿著電子雲重疊程度最大的方向形成(這就是最大重疊原理)。共價鍵有飽和性和方向性。
2.原子通過共用電子對形成共價鍵後,體系總能量降低。
共價鍵的形成是成鍵電子的原子軌道發生重疊,並且要使共價鍵穩定,必須重疊部分最大。由於除了s軌道之外,其他軌道都有一定伸展方向,因此成鍵時除了s-s的σ鍵(如H2)在任何方向都能最大重疊外,其他軌道所成的鍵都只有沿著一定方向才能達到最大重疊。
6. 怎麼判斷化合物分子中含單鍵,還是雙鍵,還是三鍵
氫+1、氧-2,把其他的元素的化合價求出來,是幾,那他就形成幾個鍵
7. 單鍵與雙鍵還有三鍵的區別與意思
就是兩個原子間形成了幾個化學鍵。如果衡備磨形成一個化學鍵就是單鍵,比如咐斗Cl-Cl
兩個化學鍵就是雙鍵比如H2C=CH2 三個化學鍵就是滾李三鍵比如N≡N
8. 什麼是單鍵,雙鍵,有什麼例子
1、單鍵,在化合物分子中兩個原子間以共用一對電子而構成的共價鍵。通常用一條短線「-」表示。
例如甲烷、乙烷分子中的鍵。
2、雙鍵是共價鍵的一種,共價鍵,就意味著共用電子對的存在。簡單的說,就是這一對電子,由鍵的兩方各出一個,彼此共用。因此,一個共價鍵就可以填補一個最外層電子的空額。
例如乙烯中的C=C雙鍵。
(8)化學鍵怎麼判斷單鍵還是雙鍵擴展閱讀
1、單鍵穩定性
單鍵有鍵能、鍵長、鍵角等屬性,它們影響著單鍵的穩定性。一般來說,鍵長越小,鍵能越大,單鍵越穩定。我們也可以通過單鍵穩定性來判斷化合物的穩定性。如一般來說HF較HCl穩定,因為H-F鍵相較H-Cl鍵鍵能更大,鍵長更長。
2、在化合物分子中兩個原子間以二個共用電子對構成的重鍵。
若兩個原子形成一個σ鍵後,還各有一個未成對的p電子,它們可以相互重疊形成π鍵。這種(σ+π)的組合稱為雙鍵,常用二條短線以A=B表示,如乙烯。碳原子與碳原子C=C以雙鍵結合。