1. 如何去除水中氨氮
1、物理化學法:折點氯化法、空氣吹脫法、化學沉澱法、液膜法、電滲析除氨氮法、催化濕式氧化法、土壤灌溉法、循環冷卻水系統脫氨法。例:
(1)折點氯化法:將氯氣通入廢水中達到某一點,在該點時水中游離氯含量較低,而氨的濃度降低為0。
(2)臘蠢化學沉澱法:在一定的酸鹼條件下,水中的鎂離子、磷酸氫根和銨根可以生成磷酸銨鎂沉澱,而使銨離子從水中分離出來。
2、生物脫氮法:
(1)傳統輪大陪硝化反硝化工藝脫氮處理過程包括硝化和反硝化兩個階段。在將有機氮轉化為氨氮的基礎上,硝化階段是將污水中的氨氮氧化為亞硝酸鹽氮或硝酸鹽氮的過程;反硝化階段是將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成氮氣的過程。
(2)亞硝化反硝化:把硝化反應過仿鎮程式控制制在氨氧化產生亞硝酸根離子的階段, 阻止其進一步氧化, 直接以亞硝酸根離子作為菌體呼吸鏈氫受體進行反硝化。
2. 去除廢水中氨氮方法的比較快速去除氨氮的方法
1、生物法:指廢水中的氨胡芹晌氮微生物的作用下,通過硝化和反硝化等反應,最終形成氮氣,從而達到去除氨氮的效果。傳統的生物法氨氮去除工藝佔地面積大,硝化反應速率低。針對這個弊端,湛清自主研發了HNF-MP1高效硝化反應器從根本首轎上提高了硝褲鋒化反應速率,採用高效硝化細菌+自旋轉填料+多級自迴流分離器,強化了反應器內微生物的數量,極大提高硝化反應速率,硝化負荷可提升至0.2-0.5Kg.N/m3d,氨氮去除效率成倍提高。
2、折點氯化法:該方法去除氨氮是將氯氣或次氯酸鈉通入廢水中的NH3-N氧化成N2的化學脫氮工藝。
3、化學沉澱法:在氨氮皮水中發加化學沉澱利使廢水中污染物生成溶解度很小4s元淀物或聚合物,或者生成不溶於水的氣體產物,達到去除的效果,廢水中氨氮作為肥料得以回收。
4、選擇性離子交換法:指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,
可以很好地去除氨氮。
5、膜分離技術:該工藝是利用膜的選擇性,達到去除氨氮的效果。
3. 化學沉澱法去除氨氮,葯劑投加量是怎麼確定的啊詳細步驟
高純物旅濃度氨氮通常是加鹼吹脫
如果用化學沉澱法,據我所知,研究比較多的可能就是製成「鳥糞石」。
採用化學沉澱法原理,向氮磷污水中投加含Mg2+和PO3-離子的葯劑,使污水中的氨氮和螞鎮磷以鳥糞石(磷酸銨鎂,MgNH4P04·6H20)的形式沉澱出來,從而同時回收污水中的氮和磷。在試驗研究過程中,首先,通過大量試驗確定最佳化學沉澱葯劑為Na2HP04·12H20和MgS04·7H20,攪拌速度100r/min,反應時間10min。其次,確定pH值、N:P配比、Mg:P配比和反應溫度為影響反應平衡的主要因素,探討得出反應的最佳工藝條件為:pH=9.5,N:P=1.1,Mg:P=1.3,並在該最佳工藝條件下進行試驗,磷的回收率做凳可達98%,氨氮的回收率可達88%。
4. 怎樣利用化學法去除氨氮
折點氯化法去除氨氮折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮污水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。 2. 選擇性離子交換化去除氨氮離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性。 O.Lahav等用沸石作為離子交換材料,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行。在吸附階段,沸石柱作為典型的離子交換柱;而在生物再生階段,附在沸石上的細菌把脫附的氨氮氧化成硝態氮。研究結果表明,該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。 3. 空氣吹脫法與汽提法去除氨氮空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。 4. 生物法去除氨氮生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:亞硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3- 硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLSS?d);泥齡在3~5天以上。在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH- 反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。常見的生物脫氮流程可以分為3類: ⑴多級污泥系統多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇; ⑵單級污泥系統單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在去碳源,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統; ⑶生物膜系統將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。由於常規生物處理高濃度氨氮廢水還存在以下: ?為了能使微生物正常生長,必須增加迴流比來稀釋原廢水; ?硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。 5. 化學沉澱法去除氨氮化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。化學沉澱法處理NH3-N是始於20世紀60年代,在90年代興起的一種新的處理方法,其主要原理就是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4?6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4?6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4?6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。
5. 氨氮怎麼去除
1、折點氯化法:該方法是將氯氣或次氯酸鈉通入廢水中的NH3-N氧化成N2的化學脫氮工藝。在處理氨氮廢水過程中,所需的氯氣量取決於溫度、PH值和氨氮的濃度。氧化每克氨氮需要9~10mg氯氣,PH值在6~7時為較佳反應區間,接觸時間為0.5~2小時。
特點:氯化法處理率高,效果穩定,不受溫度影響。不過雖然投資較少,氮運行費用較高,只適用於處理低濃度氨氮廢水。
2、MAP沉澱法:在氨氮廢水中投加磷鹽和鎂鹽使廢水中污染物生成溶解度很小的沉澱物或聚合物,達到去除氨氮的效果。
特點:廢水中氨氮能作為肥料得以回收,若廢水中磷酸根較高,只需投加鎂鹽,少量投加或不投加磷鹽,即可達到脫氮除磷作用,但三者之間的比例需要控製得當。
3、選擇性離子交換法:指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,可以很好地去除氨氮。
特點:沸石使用成本低,對NH4+有很強的選擇性。該工藝簡單、投資省,具有較高的去除率和穩定性。適用於中低濃度的氨氮廢水,對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。
4、生物法:指廢水中的氨氮在微生物的作用下,通過硝化和反硝化等反應,最終形成氮氣,從而達到去除氨氮的效果。
特點:生物脫氮法可去除多種含氮化合物,二次污染小且比較經濟,因此在國內外運用較多。不足是佔地面積大,低溫時去除效率低。
5、膜分離技術:該工藝是利用膜的選擇性,達到去除氨氮的效果。
特點:該方法氨氮回收率高、無二次污染。該工藝流程簡單、不消耗葯劑、運行過程中消耗的電量與廢水中氨氮的濃度成正比。
以上內容參考:網路-氨氮廢水處理
6. 快速去除氨氮廢水
快速去除氨氮廢水的方法有生物脫氮法,折點加氯法,吹脫法,離子交換法,化學沉澱法。
1、生物脫氮法:是利用微生物(反硝化菌)處理廢水中氮污染物 的生物轉化法,廢水中的氮氧胡圓化合物通過硝化、反硝化作用被轉化 為對分子氮(N2)逸出返回大氣。
2、折點加氯法:將氯氣或次氯酸鈉通入廢水中將廢水中的NH3氧化成N2的過程。折點加氯法的優點是可通過控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時達到消毒的目的。
3、吹脫法:將氣體(載氣)通入水中,使之相互充分接觸,使水中溶解氣體和揮發性物質穿過氣豎笑液界面,向氣相轉移,從而達到脫除 污染物的目的。
4、離子交換法:固體顆粒和液體的界面上發生的余做含離子交換過程。 離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。
5、化學沉澱法:其原理是在氨氮廢水中投加沉澱劑MgCl2和 Na2HPO4,與NH4+反應生成MgNH4PO4·6H2O沉澱,從而去除廢水中氨氮。
7. 氨氮高了,高氨氮廢水有哪些處理方法
隨著我國經濟的高速發展,產生了大量高濃度氨氮廢水。氨氮廢水的大量排放,導致水體中氨氮大量富集,引起水體的富營養化與惡化,對水環境造成巨大危害,不僅嚴重影響了人們的正常生活,甚至危害了人們的身體健康,社會影響巨大。因此,國家在氨氮廢水的排放要求方面也制定了越來越嚴格的法規與排放標准。目前,除了合成氨、肉類加工、鋼鐵等12個行業執行相應的國家行業標准(通常一級標准為25mg/L)外,其他均需遵守國家標准GB8978-1996«污水綜合排放標准»。該標准明確1998年後新建單位氨氮最高允許排放濃度為15mg/L。
氨氮廢水的處理方法和工藝有很多種,主要有物化法和生物法。物化法包括吹脫法、離子交換法、折點氯化法、化學沉澱法、膜分離法、高級氧化法、電解法、土壤灌溉法等。生物法包括硝化—反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、SBR、氧化溝等。
1、物化法
罩汪1.1 吹脫法
在廢水中氨氮多以銨離子(NH+4)和游離氨(NH3)的狀態存在,兩者保持平衡,平衡關系為:敏弊NH3+H2O→NH+4+OH-。這個平衡受pH值影響。當廢水pH值升高時,OH-離子增多,該平衡反應向左移動,有利於NH+4生成游離態的NH3,從而使得游離氨所佔比例增大,游離氨易於從水中逸出。當廢水的pH值升高到11左右時,廢水中的氨氮幾乎全部以NH3的形式存在,再加上曝氣吹脫的物理作用,則可促使NH3更容易從水中逸出,向大氣轉移。此外,該反應為放熱反應,溫度升高,反應方程向左移動,也有利於NH3從水中逸出。依據此原理,可以採用吹脫法來去除廢水中氨氮,吹脫法一般分為空氣吹脫法、水蒸汽吹脫法(汽提法)和超重力吹脫法。
1.1.1 空氣吹脫法
空氣吹脫法去除氨氮的原理是:在鹼性條件下,通過外力將空氣鼓入需要脫氨處理的廢水中,同時在廢水中使鼓入的空氣和廢水充分接觸,廢水中溶解的游離態氨將穿過廢水界面,向外界空氣轉移,從而達到去除氨氮的目的。
目前,空氣吹脫法在高濃度氨氮廢水處理中的應用較多,吹脫速率高,處理費用相對較低,但隨著氨氮濃度的降低,特別是當氨氮質量濃度低於1g/L以下時,吹脫速率顯著降低。氣液比、pH值、氣體流速、溫度、初始濃度等是影響吹脫法處理效果的主要因素。
現有吹脫裝置主要有吹脫池和吹脫塔,由於前者效率低,易受外界環境影響,因此多採用吹脫塔裝置。通常採用逆流操作,塔內裝有一定高度的填料以增加氣—液傳質面積,從而有利於氨氣從廢水中解吸。常用填料有拉西環、聚丙烯鮑爾環、聚丙烯多面空心球等。
空氣吹脫法的優點是:具有穩定的氨氮去除率,工藝操作簡單,氨氮容積負荷大等。缺點是:吹脫過程中易使填料層結垢,使廢水流通不暢,從而影響設備的正常運行;同時,吹脫工藝需要調節廢水pH值,需投加大量鹼,從而使廢水處理成本增高;另外,經空氣吹脫處理後,廢水中還含有少量氨氮,處理後的廢水時常不能達到國家排放標准。因此,吹脫法通常與其他方法聯合使用。
1.1.2 水蒸汽吹脫法(汽提法)
汽提法去除氨氮的原理是:大量蒸汽與廢水接觸,將廢水中游離氨蒸餾出來,以達到去除氨氮的目的。當向廢水中通入水蒸汽時,兩液相在填料表面上逆流接觸進行熱和物質交換,當水溶液的蒸汽壓超過外界的壓力時,廢水就開始沸騰,氨就加速轉為氣相。此外,氣泡表面之間形成自由表面,廢水中的氨不斷向氣泡內蒸發擴散,當氣泡上升到液面上破裂釋放出其中的氨,大量的氣泡擴大了蒸發表面,強化了傳質過程,通入的蒸汽升高了廢水的溫度,從而也提高了一定pH值時被吹脫的分子氨的比率。
汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與空氣吹脫法類似,氨氮去除率高,但汽提法工藝處理成本高,操作條件難控制,消耗動力高等。
1.1.3 超重力吹脫法
空氣吹脫法和水蒸汽吹脫法一般采物拿仔用填料塔作為吹脫設備,而超重力吹脫法是利用超重力設備———超重機取代傳統的填料塔作為吹脫設備,以空氣為氣提劑,將水中的游離氨解吸到氣相中的氨氮廢水治理方法。
氨氮廢水加鹼調節pH值為10~11後進入超重機處理。廢水經超重機分布器均勻噴灑在填料內緣,在超重力作用下,液體被填料粉碎成液滴,沿填料徑向甩出,經筒壁匯集後從超重機底部流出。同時,空氣經超重機進氣口進入超重機殼體,在一定風壓下,由超重機轉子外腔沿徑向進入內腔。在填料層內,氣液兩相在大的氣液接觸面積的情況下完成氣液接觸,將水中的游離氨吹出。氣體送至除霧器,將夾帶的少量液體分離後,至吸收裝置,脫氨後排空。利用超重機的水力學特性與傳遞特性,可獲得良好的吹脫效果並減少設備投資與運行費用。
與工業上傳統僅使用塔設備的吹脫法相比,超重力法吹脫法具有以下幾點優勢:
(1)設備體積質量小,設備及基建費用少,過程放大容易,啟動、停車迅速,運行更穩定;
(2)擺脫了重力場的影響,對物料粘度適應性廣,操作彈性大;
(3)氣相動力消耗小,物料停留時間短,傳質系數大;
(4)去除氨氮效率高,有利於氣相中氨的回收利用:
(5)能夠增加水中的溶解氧,為可能的後續生化處理提供充足氧源。但是目前超重力法吹脫氨氮技術的大規模工業應用較少,主要是因為該技術不夠成熟。特別是大型的結構,仍需要根據具體的物系進行合理設計和試驗。
1.2 離子交換法
離子交換法是一種特殊的吸附過程即交換吸附。其主要機理是:利用離子間的濃度差和交換劑上的功能基對離子的親和力作為推動力達到吸附特定離子的目的。吸附過程是可逆的,吸附飽和的交換劑通過添加特定的解吸液可對交換劑上吸附的離子進行解吸,從而實現交換劑的循環使用。常見的交換劑有沸石等天然交換劑和人工合成的離子交換樹脂兩大類,而後者還可根據樹脂上功能團的不同分為陽離子交換樹脂和陰離子交換樹脂。
天然沸石(主要是斜發沸石)對NH+4具有強的選擇吸附能力,並且天然沸石的價格低於人工合成的離子交換樹脂。因此,工程上常用沸石對NH+4的強選擇性,將NH+4截留於沸石表面,從而去除廢水中的氨氮。pH值=4~8是沸石離子交換的最佳范圍。當pH值<4時,H+與NH+4發生競爭;pH值>8時,NH+4變為NH3,從而失去離子交換性能。但是沸石交換容量容易飽和,吸附容量低,更換頻繁,飽和後的沸石需再生才能再次使用。
離子交換樹脂主要是利用特定陽離子交換樹脂與水中的NH+4進行交換,交換後的樹脂再通過解吸而還原。與沸石相比,強酸型陽離子交換樹脂吸附容量大,處理效果穩定,但目前對強酸型陽離子交換樹脂的研究多處於實驗室階段。
離子交換法的優點是去除率高,適用於處理中低濃度的氨氮廢水。處理含氨氮10mg/L~20mg/L的城市污水,出水濃度可達1mg/L以下。但對於高濃度的氨氮廢水,會造成短時間交換劑飽和,從而再生頻繁,使處理成本增大,且再生液仍為高濃度氨氮廢水,仍需進一步處理。在實際工程應用中,離子交換法常結合其它污水處理工藝來處理高濃度氨氮廢水,先用其它方法作預處理,使經預處理後的廢水濃度在100mg/L左右,然後再用離子交換法處理剩餘氨氮廢水。
1.3 折點氯化法
折點氯化法是將氯氣通入氨氮廢水中達到某一點,在該點時水中游離氯含量最低,而氨氮的濃度降為零。當通入的氯氣量超過該點時,水中的游離氯就會增多,該點稱為折點,該狀態下的氯化稱為折點氯化,折點氯化法的原理就是氯氣與氨反應生成了無害的氮氣。加氯量對反應有很大影響,當氯的投加量與氨的摩爾比為1∶1時,化合余氯增加,主要為氯氨。當該比例為1.5∶1時余氯下降至最低點即「折點」,反應方程式為:NH+4+1.5HClO→0.5N2+1.5H2O+2.5H++1.5Cl-。pH值也是主要影響因素,pH值高時產生NO-3,低時產生NCl3。為了保證完全反應,通常pH值控制在6~8,一般加9mg~10mg的氯氣可氧化1mg氨氮。
折點加氯法的優點是氨氮去除率高(可達90%~100%),不受水溫影響,處理效果穩定,反應迅速完全,設備投資少,並有消毒作用。缺點是由於在處理氨氮廢水中要調節pH值,處理成本較高。同時液氯使用安全要求高且貯存時要求的環境條件高。另外,折點加氯法處理氨氮廢水後會產生副產物氯代有機物和氯胺,會給環境帶來二次污染。因此,折點氯化法多用於較低濃度氨氮廢水,適用於廢水的深度處理,工業上一般用於給水處理,對於大水量高濃度氨氮廢水不適合。
1.4 化學沉澱法
化學沉澱法去除廢水中氨氮的原理是:向氨氮廢水中投加磷酸鹽和鎂鹽,使廢水中的氨氮與磷酸鹽和鎂鹽生成一種難溶性的磷酸氨鎂沉澱(MgNH4PO4•6H2O),從而達到去除廢水中氨氮的目的。
磷酸銨鎂(MAP)又稱鳥糞石,可溶於熱水和稀酸,不溶於醇類、磷酸氨以及磷酸鈉的水溶液,遇鹼易分解、在空氣中不穩定,升溫至100℃時便會失水變為無機鹽,繼續加熱至融化(約600℃)則會分解成焦磷酸鎂。MAP可以用作飼料和肥料的添加劑,是一種很好的長效復合肥;也可用於塗料生產、氨基甲酸酯、軟泡阻燃劑製造和醫葯行業。因此,磷酸銨鎂脫氮除磷技術既可以去除廢水中的氨氮,又可回收較有經濟價值的MAP,達到變廢為寶的目的。
化學沉澱法的優點是工藝簡單、效率高,經處理後產生的沉澱物MAP經進一步加工處理後,能成為性能優良的農家復合肥料。缺點是處理成本高。在處理氨氮廢水過程中需加入大量價格昂貴的混凝劑。此外,去除1gNH+4-N可產生8.35gNaCl,由此帶來的高鹽度將會影響後續生物處理的微生物活性。因此,該方法一直停留在實驗室規模未在工程上運用,較少用於實際氨氮廢水處理。
1.5 膜分離法
膜分離法包括反滲透法、液膜法、電滲析法等。
1.5.1 反滲透法
反滲透就是藉助外界的壓力使膜內部的壓力大於膜外的壓力,使小於膜孔徑的分子(水)透過,大於膜孔徑的分子截留在膜內,這種作用現象稱作反滲透。其作用機理關鍵在於半透膜的選擇透過性,半透膜上有好多細小的微孔,像水分子這樣的小分子可以自由的透過,而大於半透膜上微孔的NH+4則不能通過。當溶液進入膜系統後,在外加壓力的作用下半透膜就會選擇性的讓某些小分子物質透過,大分子物質NH+4則會留在半透膜內側通過管道另外的出口排出。
反滲透裝置處理廢水需要對原水進行預處理,不然會損壞裝置內的膜件,並且該裝置需要高質量的膜。
1.5.2 液膜法
液膜法又稱氣態膜法,目前已應用於水溶液中揮發性物質的脫除、回收富集和純化,如NH3、CO2、SO2、Cl2、Br2等。液膜法去除氨氮的機理是:採用疏水性中空纖維微孔膜,膜一側是待處理的氨氮廢水,另一側是酸性吸收液,疏水的微孔結構在兩液相間提供一層很薄的氣膜結構。廢水中NH3在廢水側通過濃度邊界層擴散至疏水微孔膜表面,隨後在膜兩側NH3分壓差的推動下,NH3在廢水和微孔膜界面處氣化進入膜孔,然後擴散進入吸收液發生快速不可逆反應,從而達到脫除氨氮的目的。
液膜法具有比表面積大,傳質推動力高,操作彈性大,氨氮脫除率高,無二次污染等優勢,適合處理含鹽量較高、油性污染物含量低的高氨氮廢水。氨氮或含鹽量較高時,能有效抑制水的滲透蒸餾通量,減弱對吸收液的稀釋作用;但當廢水中含有油性污染物時,會造成膜的污染,使膜的傳質系數不能得到完全恢復。由於廢水的復雜性、膜材料的研發更新換代、可逆吸收劑的研發以及後續副產品的生產應用等多種原因,氣態膜法脫氨工業化進程很慢,國內生產應用實例較少。不過對於高鹽高濃度氨氮廢水,氣態膜處理成本較低,其應用前景廣闊。
1.5.3 電滲析法
電滲析法的原理是:當進水通過多組陰陽離子滲透膜時,NH+4在施加的電壓影響下,透過膜到達膜另一側濃水中並集聚,從而從進水中分離出來,實現溶液的淡化、濃縮、精製和提純。國內外專家在電滲析法處理氨氮廢水方面作了大量研究,並取得了一定成績。但由於高選擇性的防污膜仍在發展中,且對廢水預處理的要求很高,電滲析法用於工業尚需時日。
1.6 高級氧化法
高級氧化法是通過化學、物理化學方法將廢水中污染物直接氧化成無機物,或將其轉化為低毒、易降解的中間產物。應用於脫除廢水中氨氮的高級氧化法主要有濕式催化氧化法和光催化氧化法。
1.6.1 濕式催化氧化法
濕式催化氧化法是20世紀80年代國際上發展起來的一種治理廢水的新技術,其原理是:在特定的溫度、壓力下,通過催化劑作用,經空氣氧化可使污水中的有機物和氨氮分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。
濕式催化氧化法技術優點是:氨氮負荷高,工藝流程簡單,氨氮去除率高,佔地面積少等。缺點是:在處理氨氮廢水中會使用大量催化劑,造成催化劑的流失和增加對設備的腐蝕,使氨氮廢水處理成本增大。
濕式催化氧化法從處理效果上來說適合高濃度氨氮廢水的處理,但這種方法對溫度、壓力、催化劑等條件要求非常嚴格,反應設備須抗酸抗鹼耐高壓,一次性投資巨大,而且處理水量較大時費用很高,經濟上不劃算,目前在國內還鮮有工程應用的實例。
1.6.2 光催化氧化法
光催化氧化法是最近發展起來的一種處理廢水的高級氧化技術,它可以使廢水中的有機物在特定氧化劑的作用下完全分解為簡單的無機物CO2和H2O,達到降解污染物的目的,處理方法簡單高效,沒有二次污染。但由於反應過程中需要的催化劑難以分離回收,使該方法在實際工程中一定程度上受到了限制。
1.7 電解法
電解法利用陽極氧化性可直接或間接地將NH+4氧化,具有較高的氨氮去除率,該方法操作簡便,自動化程度高,其缺點是耗電量大,因此並不適用於大規模含氨氮廢水的處理。
1.8 土壤灌溉法
土壤灌溉法是把低濃度的氨氮廢水(50mg/L)作為農作物的肥料來使用,該法既為污灌區農業提供了穩定的水源,又避免了水體富營養化,提高了水資源利用率。土壤灌溉法只適合處理低濃度氨氮廢水,當廢水中的氨氮濃度低於50mg/L左右時,廢水中的氨氮在土壤表層發生硝化作用,在土壤深度30cm左右達到峰值,隨後由於脫氮等作用,在100cm處減小到10mg/L左右,在400cm以下土壤中未測出NH+4,直接污染到地下水的可能性幾乎為零。
2、生物法
生物脫氨氮的原理:首先通過硝化作用將氨氮氧化成亞硝酸氮(NO-2-N),再通過硝化作用將亞硝酸氮進一步氧化為硝酸氮(NO3-N),最後通過反硝化作用將硝酸氮還原成氮氣(N2)從水中逸出。
生物法的優點是:可去除多種含氮化合物,對氨氮可以徹底降解,總氨氮去除率可達95%以上,二次污染小且運行費用低。然而生物法對水質有嚴格的要求,高濃度的氨氮對微生物活性有抑製作用,會降低生化系統對有機污染物的降解效率,從而導致出水難於達標排放。
因此,生物法主要用來處理低濃度的氨氮廢水,且沒有或少有毒害物質存在,主要在處理生活污水以及垃圾滲濾液等方面應用較廣泛。常見的氨氮廢水生物處理工藝有傳統硝化反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、氧化溝和SBR。
3、方法比較
根據廢水中氨氮濃度不同可將廢水分為三類:
(1)低濃度氨氮廢水:氨氮濃度小於50mg/L;
(2)中濃度氨氮廢水:氨氮濃度為50mg/L~500mg/L;
(3)高濃度氨氮廢水:氨氮濃度大於500mg/L。
8. 如何去除水中氨氮
根據廢水中氨氮濃度的不同,可將廢水分為3類:
高濃度氨氮廢水(NH3-N>500mg/l);
中等濃度氨氮廢水(NH3-N:50-500mg/l);
低濃度氨氮廢水(NH3-N<50mg/l)。
然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。
去除氨氮的主要方法有:物理法、化學法、生物法。物理法有反滲透、蒸餾、土壤灌溉等處態哪嫌理技術;化學法有離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法有藻類養殖、生物硝化、固定化生物技術等處理技術。
目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。
1.折點氯化法除氨氮
折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。
折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除帆手1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:
Cl2+H2O→HOCl+H++Cl-
NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-
NHCl2+NaOH→N2+HOCl+H++Cl-
折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。
2.選擇性離子交換化除氨氮
離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性,能成功地去除原水和二級出水中的氨氮。
沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。
3.空氣吹脫法與汽提法除緩譽氨氮
空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。
汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。
吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。
4.生物法除氨氮
生物法去除氨氮是指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。
硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:
亞硝化:2NH4++3O2→2NO2-+2H2O+4H+
硝化:2NO2-+O2→2NO3-
硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLS•d);泥齡在3~5天以上。
在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。
常見的生物脫氮流程可以分為3類:
⑴多級污泥系統
多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;
⑵單級污泥系統
單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在缺氧池,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;
⑶生物膜系統
將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。
常規生物處理高濃度氨氮廢水是要存在以下條件:
為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;
硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。
5.化學沉澱法除氨氮
化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。
化學沉澱法處理NH3-N主要原理是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。
9. 怎樣利用化學法除氨氮
或者生成不溶於水的氣體產物,但由此引起的pH值下降一般可以忽略。前置反硝化的生物脫氮流程,基建費用可大大節省,不受水溫影響。 2. 選擇性離子交換化去除氨氮離子交換是指在固體顆粒和液體的界面上發生的離子交換過程,沒有回收氨。吹脫法除氨氮;11;L以下。此系統中應有混合液迴流。但再生液為高濃度氨氮廢水。對於氨氮濃度低(小於50mg/.5mg/;如果pH值>: ⑴多級污泥系統多級污泥系統通常被稱為傳統的生物脫氮流程,去除率可達60%~95%。將廢水pH值調節至鹼性時,或者達到一定的去除率,通過改換進水和出水的方向,成本低。其缺點是運行管理費用較高,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體,通過與NH3-N的氧化還原反應獲得能量.4:2~3mg/; ⑵單級污泥系統單級污泥系統的形式包括前置反硝化系統。當氯氣通入量超過該點時。 O.Lahav等用沸石作為離子交換材料、pH值及氨氮濃度,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程、化肥,出水中殘留一定量甲醇,低溫時效率低;硝化過程不僅需要大量氧氣,溶液中PO43-濃度很低,理論上可接近100%的脫氮效果,使廢水中污染物生成溶解度很小的沉澱物或聚合物,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水。研究結果表明,而主要生成Mg(H2PO4)2,而當溫度低至3℃時。硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽;6H2O沉澱生成、Mg2+。整個反應的pH值的適宜范圍為9~11,通過硝化和反硝化等一系列反應.06-0,對氨氮的去除率可達97%以上,處理效果穩定,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,沸石柱作為典型的離子交換柱,提高出水水質,不利於MgNH4PO4?,該狀態下的氯化稱為折點氯化。離子交換法具有工藝簡單,離子態銨轉化為分子態氨、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行、催化劑,處理效果穩定,從而達到去除氨氮的目的,能成功地去除原水和二級出水中的氨氮。交替工作的生物脫氮流程主要由兩個串聯池子組成、反應時間。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂.0。pH值<9時,使操作無法正常進行,但脫氮的效果高於前置式,H+與NH4+發生競爭、投資省去除率高的特點;好氧池在缺氧池後,必須配置計算機控制自動操作系統,當溫度低於10℃時。 5. 化學沉澱法去除氨氮化學沉澱法是根據廢水中污染物的性質,可開發作為復合肥使用,包括兩個基本反應步驟,基建費用高,因為混合液缺乏有機物,以去除水中殘留的氯,避免了混合液的迴流,現在許多吹脫裝置考慮到經濟性:0,一般認為COD/,必須增加迴流比來稀釋原廢水; ?。因此該點稱為折點,而煉鋼,但是機理基本相同;為了能使微生物正常生長。當pH<4時。該方法比較適合處理高濃度氨氮廢水。吹脫是使水作為不連續相與空氣接觸;L).5~2小時,接觸時間為0,需要外加碳源、構築物少,該沉澱物經造粒等過程後、攪拌條件。由於常規生物處理高濃度氨氮廢水還存在以下。在氨氮廢水中投加化學沉澱劑Mg(OH)2;6H2O(鳥糞石)沉澱;最佳溫度為30℃、pH值,使廢水與氣體密切接觸。用離子交換法處理含氨氮10~20mg/,可使反硝化殘留的有機污染物得到進一步去除;L的城市污水,然後通入空氣將氨吹脫出,最佳溫度為35℃,反硝化速度明顯下降,溫度對硝化菌的影響很大,從而達到去除氨氮的目的: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差,操作條件與吹脫法類似。折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,不容易控制,以免造成二次污染、H3PO4與NH4+反應生成MgNH4PO4?,一般還需要人工投加碳源;冷凝為1%的氨溶液。同時。在吸附階段,即在高pH值時,它是一類硅質的陽離子交換劑,適用於中低濃度的氨氮廢水(<500mg/。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,運行費用高;O流程;O系統中的缺氧池和好氧池改為固定生物膜反應器。與傳統的生物脫氮工藝流程相比。當氯氣通入廢水中達到某一點時水中游離氯含量最低,總氮去除率可達70%~95%。氧化每克氨氮需要9~10mg氯氣,但不需污泥迴流: ?,其主要原理就是NH4+、後置反硝化系統及交替工作系統,污水中的有機碳被反硝化菌所利用,直接排放到大氣中,NH4+變為NH3而失去離子交換性能,通常稱為A/,在90年代興起的一種新的處理方法: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH- 反硝化菌的適宜pH值為6。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用。化學沉澱法處理NH3-N是始於20世紀60年代;DO濃度。此外,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液。但水溫低時吹脫效率低,水中的游離氯就會增多,在北方寒冷季節效率會大大降低,未收尾氣返回吹脫塔中。氯化法的處理率達90%~100%,特別是溫度影響比較大,二次污染小且比較經濟,硝化速度下降一半,但運行費用高,但吹脫效率影響因子多,對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難,從而使廢水凈化,在一定的工藝條件下(溫度,用這種方法較為經濟,仍需進一步處理、有機化工、配料比例等等)進行化學反應。都需要經過硝化和反硝化兩個階段。生物脫氮法可去除多種含氮化合物;將脫氮池設置在去碳源,而且反硝化需要大量的碳源;BOD5負荷,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在、壓力.1kgBOD5/。 4. 生物法去除氨氮生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,其反應式為,該工藝特點;6H2O更難溶於水的Mg3(PO4)2的沉澱,溫度下降10℃,稱為反硝化,同時使廢水達到消毒的目的。此流程可以得到相當好的BOD5去除效果和脫氮效果。1mg殘留氯大約需要0,此反應將在強鹼性溶液中生成比MgNH4PO4?,從而降低廢水中氨濃度的過程:亞硝化。折點氯化法除氨機理如下。汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。常見的生物脫氮流程可以分為3類,即形成生物膜脫氮系統;缺氧池在前。但汽提塔內容易生成水垢。吹脫和汽提法處理廢水後所逸出的氨氣可進行回收。在反氯化時會產生氫離子: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化.9~1;O系統,因此在國內外運用最多; ⑶生物膜系統將上述A/,其脫氮效果優於一般A/,需考慮排放的游離氨總量應符合氨的大氣排放標准,不適合在寒冷的冬季使用。沸石離子交換與pH的選擇有很大關系,反硝化作用將停止:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應,也可根據市場需求;TN>3~5,但利用交替工作的方式;(kgMLSS?,用填料塔可以滿足此要求。它本質上仍是A/,利用水中組分的實際濃度與平衡濃度之間的差異,先硝化再除微量殘留氨氮;d)。處理氨氮污水所需的實際氯氣量取決於溫度。在缺氧條件下。其缺點是佔地面積大;L)的廢水來說;BOD5/,兩個池子交替在缺氧和好氧的條件下運行,該工藝具有較高的氨氮去除率和穩定性.5~8、PO43-在鹼性水溶液中生成沉澱,它們利用廢水中的碳源,在寒冷地區此法特別有吸引力,可減輕其後好氧池的有機負荷,必要時投加某種化工原料。生物法脫氮的工藝有很多種。投資較少,pH在4~8的范圍是沸石離子交換的最佳區域,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計),只有一個污泥迴流系統和混合液迴流系統,對NH4+有很強的選擇性:流程簡單;O流程,溶液中的NH4+將揮發成游離氨,副產物氯胺和氯化有機物會造成二次污染,使廢水中全部氨氮降為零。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,其缺點是流程長。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。用該法處理氨氮時;泥齡在3~5天以上;L,不利於廢水中氨氮的去除.0~8,附在沸石上的細菌把脫附的氨氮氧化成硝態氮,出水濃度可達1mg/;而在生物再生階段。以甲醇為碳源為例。低濃度廢水通常在常溫下用空氣吹脫,常將此法與生物硝化連用;L。pH值在6~7時為最佳反應區間:用硫酸吸收作為肥料使用: 2NO2-+O2→2NO3- 硝化菌的適宜pH值為8。反應方程式如下,後置式反硝化系統;當pH>8時。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應,構築物多,處理機理與吹脫法一樣是一個傳質過程,工藝流程簡單,造成大氣污染、石油化工。 3. 空氣吹脫法與汽提法去除氨氮空氣吹脫法是將廢水與氣體接觸.0mg的二氧化硫。該方法適宜用於高濃度氨氮廢水的處理,降低運行費用,氯化法只適用於處理低濃度氨氮廢水,氨的濃度降為零折點氯化法去除氨氮折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝;DO濃度<0。利用化學沉澱法,最終形成氮氣,將氨氮從液相轉移到氣相的方法;TKN至少為9。亞硝酸菌和硝酸菌都是自養菌,可使廢水中氨氮作為肥料得以回收