導航:首頁 > 化學知識 > 納米材料有哪些物理和化學性質

納米材料有哪些物理和化學性質

發布時間:2023-06-14 21:07:32

Ⅰ 納米材料有哪些性能

納米材料是指在三維空間中至少有一維處於納米尺寸(0.1-100 nm)或由它們作為基本單元構成的材料,這大約相當於10~100個原子緊密排列在一起的尺度。
特性與應用
表面與界面效應
指納米晶體粒表面原子數與總原子數之比隨粒徑變小而急劇增大後所引起的性質上的變化。表現為直徑減少,表面原子數量增多。
超微顆粒的表面具有很高的活性,在空氣中金屬顆粒會迅速氧化而燃燒。如要防止自燃,可採用表麵包覆或有意識地控制氧化速率,使其緩慢氧化生成一層極薄而緻密的氧化層,確保表面穩定化。利用表面活性,金屬超微顆粒可望成為新一代的高效催化劑、貯氣材料和低熔點材料。
小尺寸效應
當納米微粒尺寸與光波波長,傳導電子的德布羅意波長及超導態的相干長度、透射深度等物理特徵尺寸相當或更小時,它的周期性邊界被破壞,從而使其聲、光、電、磁,熱力學等性能呈現出「新奇」的現象。隨著顆粒尺寸的量變,在一定條件下會引起顆粒性質的質變。由於顆粒尺寸變小所引起的宏觀物理性質的變化稱為小尺寸效應。對超微顆粒而言,尺寸變小,同時其比表面積亦顯著增加,從而產生如下性質:

1、特殊的光學性質
所有的金屬在超微顆粒狀態都呈現為黑色。尺寸越小,顏色愈黑,銀白色的鉑(白金)變成鉑黑,金屬鉻變成鉻黑。由此可見,金屬超微顆粒對光的反射率很低,通常可低於l%,大約幾微米的厚度就能完全消光。利用這個特性可以製造高效率的光熱、光電轉換材料,以很高的效率將太陽能轉變為熱能、電能。另外還有可能應用於紅外敏感元件、紅外隱身技術等。
2、特殊的熱學性質
固態物質在其形態為大尺寸時,其熔點是固定的,超細微化後卻發現其熔點將顯著降低,當顆粒小於10納米量級時尤為顯著。超微顆粒熔點下降的性質對粉末冶金工業具有一定的吸引力。
3、特殊的磁學性質
在研究納米材料過程中科學家發現鴿子、海豚、蝴蝶、蜜蜂以及生活在水中的趨磁細菌等生物體中存在超微的磁性顆粒,使這類生物在地磁場導航下能辨別方向,具有回歸的本領。
小尺寸的磁性超微顆粒與大塊材料顯著不同。大塊的純鐵矯頑力約為 80安/米,而當顆粒尺寸減小到 2×10-2微米以下時,其矯頑力可增加1000倍。若進一步減小其尺寸,大約小於 6×10-3微米時,其矯頑力反而降低到零,呈現出超順磁性。
利用磁性超微顆粒具有高矯頑力的特性,已作成高儲存密度的磁記錄磁粉,大量應用於磁帶、磁碟、磁卡以及磁性鑰匙等。利用超順磁性,人們已將磁性超微顆粒製成用途廣泛的磁性液體。
4、特殊的力學性質
美國學者報道氟化鈣納米材料在室溫下可以大幅度彎曲而不斷裂。研究表明,人的牙齒之所以具有很高的強度,是因為它是由磷酸鈣等納米材料構成的。呈納米晶粒的金屬要比傳統的粗晶粒金屬硬3~5倍。金屬—陶瓷復合納米材料則可在更大的范圍內改變材料的力學性質,其應用前景十分寬廣。
超微顆粒的小尺寸效應還表現在超導電性、介電性能、聲學特性以及化學性能等方面。
量子尺寸效應
當粒子的尺寸達到納米量級時,費米能級附近的電子能級由連續態分裂成分立能級。當能級間距大於熱能、磁能、靜電能、靜磁能、光子能或超導態的凝聚能時,會出現納米材料的量子效應,從而使其磁、光、聲、熱、電、超導電性能變化。
納米粉末中由於每一粒子組成原子少,表面原子處於不安定狀態,使其表面晶格震動的振幅較大,所以具有較高的表面能量,造成超微粒子特有的熱性質,也就是造成熔點下降,同時納米粉末將比傳統粉末容易在較低溫度燒結,而成為良好的燒結促進材料。
宏觀量子隧道效應
微觀粒子具有貫穿勢壘的能力稱為隧道效應。納米粒子的磁化強度等也有隧道效應,它們可以穿過宏觀系統的勢壘而產生變化,這種被稱為納米粒子的宏觀量子隧道效應。

Ⅱ 納米材料的性質

納米材料高度的彌散性和大量的界面為原子提供了短程擴散途徑,導致了高擴散率,它對蠕變,超塑性有顯著影響,並使有限固溶體的固溶性增強、燒結溫度降低、化學活性增大、耐腐蝕性增強。因此納米材料所表現的力、熱、聲、光、電磁等性質,往往不同於該物質在粗晶狀態時表現出的性質。與傳統晶體材料相比,納米材料具有高強度——硬度、高擴散性、高塑性——韌性、低密度、低彈性模量、高電阻、高比熱、高熱膨脹系數、低熱導率、強軟磁性能。這些特殊性能使納米材料可廣泛地用於高力學性能環境、光熱吸收、非線性光學、磁記錄、特殊導體、分子篩、超微復合材料、催化劑、熱交換材料、敏感元件、燒結助劑、潤滑劑等領域。
1
力學性質
高韌、高硬、高強是結構材料開發應用的經典主題。具有納米結構的材料強度與粒徑成反比。納米材料的位錯密度很低,位錯滑移和增殖符合frank-reed模型,其臨界位錯圈的直徑比納米晶粒粒徑還要大,增殖後位錯塞積的平均間距一般比晶粒大,所以納迷材料中位錯滑移和增殖不會發生,這就是納米晶強化效應。金屬陶瓷作為刀具材料已有50多年歷史,由於金屬陶瓷的混合燒結和晶粒粗大的原因其力學強度一直難以有大的提高。應用納米技術製成超細或納米晶粒材料時,其韌性、強度、硬度大幅提高,使其在難以加工材料刀具等領域占據了主導地位。使用納米技術製成的陶瓷、纖維廣泛地應用於航空、航天、航海、石油鑽探等惡劣環境下使用。

Ⅲ 納米材料的物理性質主要有什麼! 適當舉出利用物理性質在生活中的具體應用。

隨著納米技術的不斷發展,在微觀上具有各種形貌的納米材料的研究引起了人們廣泛的興趣。這是由於納米材料的物理和化學性能會隨著材料的尺寸,組成和形貌的改變而變化。如:光學性能、電學性能、磁學性能、吸附性能以及催化性能等等都與納米材料自身的形貌和組成密切相關。中空的微/納米球由於其具有體積密度小,表面積大,以及獨特的物理、化學性能等優點而具有廣泛的應用,已越來越引起人們的興趣.
納米金屬塊體耐壓耐拉 將金屬納米顆粒粉體製成塊狀金屬材料強度比一般金屬高十幾倍,又可拉伸幾十倍。用來製造飛機、汽車、輪船,重量可減小到原來的十分之一。
1.在催化方面的應用
催化劑在許多化學化工領域中起著舉足輕重的作用,它可以控制反應時間、提高反應效率和反應速度。大多數傳統的催化劑不僅催化效率低,而且其制備是憑經驗進行,不僅造成生產原料的巨大浪費,使經濟效益難以提高,而且對環境也造成污染。納米粒子表面活性中心多,為它作催化劑提供了必要條件。納米粒於作催化劑,可大大提高反應效率,控制反應速度,甚至使原來不能進行的反應也能進行。納米微粒作催化劑比一般催化劑的反應速度提高10~15倍。
納米微粒作為催化劑應用較多的是半導體光催化劑,非凡是在有機物制備方面。分散在溶液中的每一個半導體顆粒,可近似地看成是一個短路的微型電池,用能量大於半導體能隙的光照射半導體分散系時,半導體納米粒子吸收光產生電子——空穴對。在電場作用下,電子與空穴分離,分別遷移到粒子表面的不同位置,與溶液中相似的組分進行氧化和還原反應。
光催化反應涉及到許多反應類型,如醇與烴的氧化,無機離子氧化還原,有機物催化脫氫和加氫、氨基酸合成,固氮反應,水凈化處理,水煤氣變換等,其中有些是多相催化難以實現的。半導體多相光催化劑能有效地降解水中的有機污染物。例如納米TiO2,既有較高的光催化活性,又能耐酸鹼,對光穩定,無毒,便宜易得,是制備負載型光催化劑的最佳選擇。已有文章報道,選用硅膠為基質,製得了催化活性較高的TiO/SiO2負載型光催化劑。Ni或Cu一Zn化合物的納米顆粒,對某些有機化合物的氫化反應是極好的催化劑,可代替昂貴的鉑或鈕催化劑。納米鉑黑催化劑可使乙烯的氧化反應溫度從600℃降至室溫。用納米微粒作催化劑提高反應效率、優化反應路徑、提高反應速度方面的研究,是未來催化科學不可忽視的重要研究課題,很可能給催化在工業上的應用帶來革命性的變革。
2、在生物醫學中應用
從蛋白質、DNA、RNA到病毒,都在1-100nm的尺度范圍,從而納米結構也是生命現象中基本的東西。細胞中的細胞器和其它的結構單元都是執行某種功能的「納米機械」,細胞就象一個個「納米車間」,植物中的光合作用等都是「納米工廠」的典型例子。遺傳基因序列的自組裝排列做到了原子級的結構精確,神經系統的信息傳遞和反饋等都是納米科技的完美典範。生物合成和生物過程已成為啟發和製造新的納米結構的源泉,研究人員正效法生物特性來實現技術上的納米級控制和操縱。納米微粒的尺寸常常比生物體內的細胞、紅血球還要小,這就為醫學研究提供了新的契機。目前已得到較好應用的實例有:利用納米SiO2微粒實現細胞分離的技術,納米微粒,特別是納米金(Au)粒子的細胞內部染色,表麵包覆磁性納米微粒的新型葯物或抗體進行局部定向治療等。
正在研製的生物晶元包括細胞晶元、蛋白質晶元(生物分子晶元)和基因晶元(即DNA晶元)等,都具有集成、並行和快速檢測的優點,已成為納米生物工程的前沿科技。將直接應用於臨床診斷,葯物開發和人類遺傳診斷。植入人體後可使人們隨時隨地都可享受醫療,而且可在動態檢測中發現疾病的先兆信息,使早期診斷和預防成為可能。納米生物材料也可以分為兩類,一類是適合於生物體內的納米材料,如各式納米感測器,用於疾病的早期診斷、監測和治療。各式納米機械繫統可以快速地辨別病區所在,並定向地將葯物注入病區而不傷害正常的組織或清除心腦血管中的血栓、脂肪沉積物,甚至可以用其吞噬病毒,殺死癌細胞。另一類是利用生物分子的活性而研製的納米材料,它們可以不被用於生物體,而被用於其它納米技術或微製造。
3、在其它精細化工方面的應用
精細化工是一個巨大的工業領域,產品數量繁多,用途廣泛,並且影響到人類生活的方方面面。納米材料的優越性無疑也會給精細化工帶來福音,並顯示它的獨特畦力。在橡膠、塑料、塗料等精細化工領域,納米材料都能發揮重要作用。如在橡膠中加入納米SiO2,可以提高橡膠的抗紫外輻射和紅外反射能力。納米Al2O3,和SiO2,加入到普通橡膠中,可以提高橡膠的耐磨性和介電特性,而且彈性也明顯優於用白炭黑作填料的橡膠。塑料中添加一定的納米材料,可以提高塑料的強度和韌性,而且緻密性和防水性也相應提高。國外已將納米SiO2,作為添加劑加入到密封膠和粘合劑中,使其密封性和粘合性都大為提高。此外,納米材料在纖維改性、有機玻璃製造方面也都有很好的應用。在有機玻璃中加入經過表面修飾處理的SiO2,可使有機玻璃抗紫外線輻射而達到抗老化的目的;而加入A12O3,不僅不影響玻璃的透明度,而且還會提高玻璃的高溫沖擊韌性。一定粒度的銳鈦礦型TiO2具有優良的紫外線屏蔽性能,而且質地細膩,無毒無臭,添加在化妝品中,可使化妝品的性能得到提高。超細TiO2的應用還可擴展到塗料、塑料、人造纖維等行業。最近又開發了用於食品包裝的TiO2及高檔汽車面漆用的珠光鈦白。納米TiO2,能夠強烈吸收太陽光中的紫外線,產生很強的光化學活性,可以用光催化降解工業廢水中的有機污染物,具有除凈度高,無二次污染,適用性廣泛等優點,在環保水處理中有著很好的應用前景。在環境科學領域,除了利用納米材料作為催化劑來處理工業生產過程中排放的廢料外,還將出現功能獨特的納米膜。這種膜能探測到由化學和生物制劑造成的污染,並能對這些制劑進行過濾,從而消除污染。
4、在國防科技的應用
納米技術將對國防軍事領域帶來革命性的影響。例如:納米電子器件將用於虛擬訓練系統和戰場上的實時聯系;對化學、生物、核武器的納米探測系統;新型納米材料可以提高常規武器的打擊與防護能力;由納米微機械繫統製造的小型機器人可以完成特殊的偵察和打擊任務;納米衛星可用一枚小型運載火箭發射千百顆,按不同軌道組成衛星網,監視地球上的每一個角落,使戰場更加透明。而納米材料在隱身技術上的應用尤其引人注目。 在雷達隱身技術中,超高頻(SHF,GHz)段電磁波吸波材料的制備是關鍵。納米材料正被作為新一代隱身材料加以研製。由於納米材料的界面組元所佔比例大,納米顆粒表面原子比例高,不飽和鍵和懸掛鍵增多。大量懸掛鍵的存在使界面極化,吸收頻帶展寬。高的比表面積造成多重散射。納米材料的量子尺寸效應使得電子的能級分裂,分裂的能級間距正處於微波的能量范圍,為納米材料創造了新的吸波通道。納米材料中的原子、電子在微波場的輻照下,運動加劇,增加電磁能轉化為熱能的效率,從而提高對電磁波的吸收性能。美國研製的「超黑粉」納米吸波材料對雷達波的吸收率達99%,法國最近研製的CoNi納米顆粒被覆絕緣層的納米復合材料,在2-7GHz范圍內,其m¢和m¢¢幾乎均大於6。最近國外正致力於研究可覆蓋厘米波、毫米波、紅外、可見光等波段的納米復合材料,並提出了單個吸收粒子匹配設計機理,這樣可以充分發揮單位質量損耗層的作用。納米材料在具備良好的吸波功能的同時,普遍兼備了薄、輕、寬、強等特點。納米材料中的硼化物、碳化物,鐵氧體,包括納米纖維及納米碳管在隱身材料方面的應用都將大有作為
5、其他領域
除此之外,納米材料還在諸如海水凈化、航空航天、環境能源、微電子學等其他領域也有著逐漸廣泛的應用,納米材料在這些領域都在逐漸發揮著光和熱。
所以在物理性質方面主要是3嘍
希望能夠幫助你

Ⅳ 納米材料具有哪些特性

因為納米材料集中了小尺寸、結構復雜和相互作用強等特點,用納米材料做成的物質,可能會產生我們想像不到的新的物理和化學現象。在納米級尺寸下,物質所具有的性質與它們在通常狀態下的性質大不一樣。

首先,超微顆粒的表面與大塊物體表面十分不同,這些顆粒沒有固定的形態,隨著時間的變化會自動形成各種形狀(如立方八面體、十面體、二十面體結晶等),因此這時物質既不同於一般固體,又不同於液體,是一種准固體。

第二,超微顆粒的表面具有很高的活性,在空氣中金屬超微顆粒會迅速氧化而燃燒。

第三,具有特殊的光學性質。金屬超微顆粒對光的反射率很低,通常可低於1%。

第四,具有特殊的熱學性質。固態物質在其形態為大尺寸時,其熔點是固定的,超細微化後卻發現其熔點將顯著降低,當顆粒小於10納米量級時尤為顯著。例如,銀的常規熔點為670攝氏度,而超微銀顆粒的熔點可低於100攝氏度。

第五,具有特殊的磁學性質。人們發現鴿子、海豚、蝴蝶、蜜蜂以及生活在水中的趨磁細菌等生物體中存在超微磁性顆粒,使這類生物在地磁場導航下能辨別方向,具有回歸的本領。磁性超微顆粒實質上是一個生物磁羅盤,生活在水中的趨磁細菌依靠它游向營養豐富的水底。

第六,具有特殊的力學性質。陶瓷材料在通常情況下呈脆性,然而由納米超微顆粒壓製成的納米陶瓷材料卻具有良好的韌性。因為納米材料具有大的界面,界面的原子排列是相當混亂的,原子在外力變形的條件下很容易遷移,因此表現出甚佳的韌性與一定的延展性,使陶瓷材料具有新奇的力學性質。研究表明,人的牙齒之所以具有很高的強度,是因為它是由磷酸鈣等納米材料構成的。此外,有些納米材料還具有超導電性等特殊性能。

Ⅳ 納米材料有什麼特性

納米材料的用途很廣,主要用途有:

醫葯 使用納米技術能使葯品生產過程越來越精細,並在納米材料的尺度上直接利用原子、分子的排布製造具有特定功能的葯品。納米材料粒子將使葯物在人體內的傳輸更為方便,用數層納米粒子包裹的智能葯物進入人體後可主動搜索並攻擊癌細胞或修補損傷組織。使用納米技術的新型診斷儀器只需檢測少量血液,就能通過其中的蛋白質和DNA診斷出各種疾病。

家電 用納米材料製成的納米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外線等作用,可用處作電冰霜、空調外殼里的抗菌除味塑料。

電子計算機和電子工業 可以從閱讀硬碟上讀卡機以及存儲容量為目前晶元上千倍的納米材料級存儲器晶元都已投入生產。計算機在普遍採用納米材料後,可以縮小成為「掌上電腦」。

環境保護 環境科學領域將出現功能獨特的納米膜。這種膜能夠探測到由化學和生物制劑造成的污染,並能夠對這些制劑進行過濾,從而消除污染。

紡織工業 在合成纖維樹脂中添迦納米SiO2、納米ZnO、納米SiO2復配粉體材料,經抽絲、織布,可製成殺菌、防霉、除臭和抗紫外線輻射的內衣和服裝,可用於製造抗菌內衣、用品,可製得滿足國防工業要求的抗紫外線輻射的功能纖維。

機械工業 採用納米材料技術對機械關鍵零部件進行金屬表面納米粉塗層處理,可以提高機械設備的耐磨性、硬度和使用壽命。

為推進我國功能納米材料的產業化進程,中國商品交易中心和中國科學院化學研究所共同組建了北京中商世紀納米技術有限公司,該公司將以中國科學院化學研究所功能納米界面材料研究組為技術依託,致力於功能納米界面材料技術與開發與推廣。

Ⅵ 納米仿生材料具有哪些性質

納米材料具有特殊的光學性質,催化性質,光催化性質,光電化學性質,化學反應性質,化學反應動力學性質和特殊的物理機械性質。由於納米材料晶粒極小,表面積特大,在晶粒表面無序排列的原子分數遠遠大於晶態材料表面原子所佔的百分數,導致了納米材料具有傳統固體所不具備的許多特殊。

納米仿生材料

由於納米材料是由相當於分子尺寸甚至是原子尺寸的微小單元組成,也正因為這樣,納米材料具有了一些區別於相同化學元素形成的其他物質材料特殊的物理或是化學特性例如,其力學特性,電學特性,磁學特性,熱學特性等,這些特性在當前飛速發展的各個科技領域內得到了應用。納米微粒尺寸小,表面能高,位於表面原子占相當大的比例。

隨著粒徑減小,表面原子數迅速增加。這是由於粒徑小,表面積急劇變大所致。由於表面原子數增多,原子配位不足及高的表面能,使這些表面原子具有高的活性,極不穩定,很容易與其它原子結合。納米材料的表面效應是指納米粒子的表面原子數與總原子數之比隨粒徑的變小而急劇增大後所引起的性質上的變化。隨著粒徑變小,表面原子所佔百分數將會顯著增加。

Ⅶ 納米材料的物理化學特性

納米材料是納米科學技術的一個重要的發展方向。納米材料是指由極細晶粒組成,特徵維度尺寸在納米量級(1~100nm)的固態材料。由於極細的晶粒,大量處於晶界和晶粒內缺陷的中心原子以及其本身具有的量子尺寸效應、小尺寸效應、表面效應和宏觀量子隧道效應等,納米材料與同組成的微米晶體(體相)材料相比,在催化、光學、磁性、力學等方面具有許多奇異的性能,因而成為材料科學和凝聚態物理領域中的研究熱點。
納米材料在結構上與常規晶態和非晶態材料有很大差別,突出地表現在小尺寸顆粒和龐大的體積百分數的界面,界面原子排列和鍵的組態的較大無規則性。這就使納米材料的光學性質出現了一些不同於常規材料的新現象。
納米材料的光學性質研究之一為其線性光學性質。納米材料的紅外吸收研究是近年來比較活躍的領域,主要集中在納米氧化物、氮化物和納米半導體材料上,如納米Al2O3、Fe2O3、SnO2中均觀察到了異常紅外振動吸收,納米晶粒構成的Si膜的紅外吸收中觀察到了紅外吸收帶隨沉積溫度增加出現頻移的現象,非晶納米氮化硅中觀察到了頻移和吸收帶的寬化且紅外吸收強度強烈地依賴於退火溫度等現象。對於以上現象的解釋基於納米材料的小尺寸效應、量子尺寸效應、晶場效應、尺寸分布效應和界面效應。目前,納米材料拉曼光譜的研究也日益引起研究者的關注。
半導體硅是一種間接帶隙半導體材料,在通常情況下,發光效率很弱,但當硅晶粒尺寸減小到5nm或更小時,其能帶結構發生了變化,帶邊向高能態遷移,觀察到了很強的可見光發射。研究納米晶Ge的光致發光時,發現當Ge晶體的尺寸減小到4nm以下時,即可產生很強的可見光發射,並認為納料晶的結構與金剛石結構的Ge 不同,這些Ge納米晶可能具有直接光躍遷的性質。Y.Masumato發現摻CuCl納米晶體的NaCl在高密度激光下能產生雙激子發光,並導致激光的產生,其光學增益比CuCl 大晶體高得多。不斷的研究發現另外一些材料,例如Cds、CuCl、ZnO、SnO2、Bi2O3、Al2O3、TiO2、SnO2、Fe2O3、CaS、CaSO4等,當它們的晶粒尺寸減小到納米量級時,也同樣觀察到常規材料中根本沒有的發光觀象。納米材料的特有發光現象的研究目前正處在開始階段,綜觀研究情況,對納米材料發光現象的解釋主要基於電子躍遷的選擇定則,量子限域效應,缺陷能級和雜質能級等方面。
納米材料光學性質研究的另一個方面為非線性光學效應。納米材料由於自身的特性,光激發引發的吸收變化一般可分為兩大部分:由光激發引起的自由電子-空穴對所產生的快速非線性部分;受陷阱作用的載流子的慢非線性過程。其中研究最深入的為CdS納米微粒。由於能帶結構的變化,納米晶體中載流子的遷移、躍遷和復合過程均呈現與常規材料不同的規律,因而其具有不同的非線性光學效應。
納米材料非線性光學效應可分為共振光學非線性效應和非共振非線性光學效應。非共振非線性光學效應是指用高於納米材料的光吸收邊的光照射樣品後導致的非線性效應。共振光學非線性效應是指用波長低於共振吸收區的光照射樣品而導致的光學非線性效應,其來源於電子在不同電子能級的分布而引起電子結構的非線性,電子結構的非線性使納米材料的非線性響應顯著增大。目前,主要採用Z-掃找(Z-SCAN)和DFWM技術來測量納米材料的光學非線性。
此外,納米晶體材料的光伏特性和磁場作用下的發光效應也是納米材料光學性質研究的熱點。通過以上兩種性質的研究,可以獲得其他光譜手段無法得到的一些信息。

閱讀全文

與納米材料有哪些物理和化學性質相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:701
乙酸乙酯化學式怎麼算 瀏覽:1369
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1008
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1366
中考初中地理如何補 瀏覽:1257
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:668
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1445
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:821
武大的分析化學怎麼樣 瀏覽:1210
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1385
化學理學哪些專業好 瀏覽:1449
數學中的棱的意思是什麼 瀏覽:1015