⑴ 化工過程工程包括哪幾個階段,各階段的工作內容是什麼
化工工程包括四個階段:
1、化學工藝學階段。在二十世紀以前的幾百年時間里,出現了不少化學工業,如製糖工業、制鹼工業、造紙工業等。介紹每種工業從原料到成品的生產過程,作為一種特殊的知識講解,這是最早的化學工程學。
2、單元操作階段。到二十世紀初,人們逐漸發現,許多門化學工業中,存在共同的操作原理。例如,無論在製糖業還是制鹼業,從溶液蒸發,得到固體糖和固體鹼所遵循的原理是相同的,於是,蒸發成為最早提出的單元操作之一。經不斷總結,被稱為單元操作的有:流體流動與輸送、沉降與過濾、固體流態化、傳熱、蒸發、蒸餾、吸收、吸附、萃取、乾燥、結晶、膜分離等。
3、傳遞過程階段。到二十世紀五十年代,人們又發現,各單元操作之間還存在著共性。例如傳熱、蒸發都是熱量傳遞的形式,蒸餾、吸附、吸收、萃取都是質量傳遞的形式。於是把單元操作歸納為動量傳遞、熱量傳遞、質量傳遞。此即化工傳遞過程階段。
4、「三傳一反」階段。五十年代中期,化學工程中出現了「化學反應工程學」這一新的分支。對化學反應器的研究,不僅要運用化學動力學與熱力學原理,而且要運用動量、熱量、質量傳遞原理。於是「傳遞過程」與「反應工程」成為當今化學工程學的兩大支柱。簡稱「三傳一反」階段。
⑵ 什麼是化學工程
化學工程
研究化學工業和其他過程工業 (process instry) 生產中所進行的化學過程和物理過程共同規律的一門工程學科。這些工業包括石油煉制工業、冶金工業、建築材料工業、食品工業、造紙工業等。它們從石油、煤、天然氣、鹽、石灰石、其他礦石和糧食、木材、水、空氣等基本的原料出發,藉助化學過程或物理過程,改變物質的組成、性質和狀態,使之成為多種價值較高的產品,如化肥、汽油、潤滑油、合成纖維、合成橡膠、塑料、燒鹼、純鹼、水泥、玻璃、鋼、鐵、鋁、紙漿等等。化學過程是指物質發生化學變化的反應過程,如柴油的催化裂化制備高辛烷值汽油是一個化學反應過程。物理過程系指物質不經化學反應而發生的組成、性質、狀態、能量變化過程,如原油經過蒸餾的分離而得到汽油、柴油、煤油等產品。至於其他一些領域 , 諸如礦石冶煉 , 燃料燃燒,生物發酵,皮革製造,海水淡化等等,雖然過程的表現形式多種多樣,但均可以分解為上述化學過程和物理過程。實際上,化學過程往往和物理過程同時發生。例如催化裂化是一個典型的化學過程,但輔有加熱、冷卻和分離,並且在反應進行過程中,也必伴隨有流動、傳熱和傳質。所有這些過程,都可通過化學工程的研究,認識和闡釋其規律性,並使之應用於生產過程和裝置的開發、設計、操作,以達到優化和提高效率的目的。
上述工業生產的共同特點是,從實驗室到工業生產特別是大規模的生產,都要解決一個裝置的放大問題。生產規模擴大和經濟效益提高的重要途徑是裝置的放大,以節省投資,降低消耗,減少佔地 , 節約人力。但是 , 在大裝置上所能達到的某些指標,通常低於小型試驗結果,原因是隨著裝置的放大,物料的流動、傳熱、傳質等物理過程的因素和條件發生了變化。這種起源於放大過程的效應,長期以來被籠統地稱作「放大效應」,它包含了很多已查明或未查明的物理因素(或稱工程因素)的影響。化學工程的一個重要任務就是研究有關工程因素對過程和裝置的效應,特別是在放大中的效應,以解決關於過程開發、裝置設計和操作的理論和方法等問題。它以物理學、化學和數學的原理為基礎,廣泛應用各種實驗手段,與化學工藝相配合,去解決工業生產問題。
化學工程包括單元操作、化學反應工程、傳遞過程、化工熱力學、化工系統工程、過程動態學及控制等方面。
單元操作 構成多種化工產品生產的物理過程都可歸納為有限的幾種基本過程,如流體輸送、換熱(加熱和冷卻)、蒸餾、吸收、蒸發、萃取、結晶、乾燥等。這些基本過程稱為單元操作。對單元操作的研究,得到具有共性的結果,可以用來指導各類產品的生產和化工設備的設計。在 20 世紀初,對化學工程的認識雖只限於單元操作,但卻開拓了一個嶄新的領域和出現了一些從事嶄新職業的化學工程師。這些化學工程師不同於以往的化工生產工作者,他們經歷過化學工程這一專門學科的訓練,故有能力使化工生產過程和設備設計、製造和操作控制更為合理。直到今天,各個單元操作的研究還是有著極為重要的理論意義和應用價值,而且是為了適應新的技術要求,一些新的單元操作不斷出現並逐步充實進來。
化學反應工程 化學反應是化工生產的核心部分,它決定著產品的收率,對生產成本有著重要影響。盡管如此,在早期因其復雜性而阻礙了對它的系統研究。直到 20 世紀中葉,在單元操作和傳遞過程研究成果的基礎上,在各種反應過程中,如氧化、還原、硝化、磺化等發現了若干具有共性的問題,如反應器內的返混、反應相內傳質和傳熱、反應相外傳質和傳熱、反應器的穩定性等。對於這些問題的研究,以及它們對反應動力學的各種效應的研究,構成了一個新的學科分支即化學反應工程,從而使化學工程的內容和方法得到了充實和發展。
傳遞過程 是單元操作和反應工程的共同基礎。在各種單元操作設備和反應裝置中進行的物理過程不外乎三種傳遞:動量傳遞、熱量傳遞和質量傳遞。例如,以動量傳遞為基礎的流體輸送、反應器中的氣流分布;以熱量傳遞為基礎的換熱操作 , 聚合釜中聚合熱的移出 ; 以質量傳遞為基礎的吸收操作,反應物和產物在催化劑內部的擴散等。有些過程有兩種或兩種以上的傳遞現象同時存在 , 如氣體增減濕等。作為化學工程的學科分支 , 傳遞過程著重研究上述三種傳遞的速率及相互關系,連貫起一些本質類同但表現形式各異的現象。
化工熱力學 是單元操作和反應工程的理論基礎,研究傳遞過程的方向和極限,提供過程分析和設計所需的有關基礎數據。因此,化學工程的學科分支也可以分兩個層次:單元操作和反應工程較多地直接面向工業實際,傳遞過程和化工熱力學較多地從基礎研究角度,支持前兩個分支。通過這兩個層次使理論和實際得以密切結合。
隨著生產規模的擴大和資源、能源的大量耗用,使得早先並不顯得很重要的問題逐漸突出起來。例如能量利用問題,設計和操作優化問題,在大型生產中都十分重要。由於化工過程中,各個過程單元相互影響,相互制約,因此很有必要將化工過程看作一個綜合系統,並建立起整體優化的概念。於是系統工程這一學科在化學工程中得到了迅速的發展,也取得了明顯的效果,形成了化工系統工程。它是系統工程方法與單元操作和化學反應工程這兩個學科分支相結合的產物。為了保持操作的合理和優化,過程動態特性和控制方法也是化學工程的重要內容。
化學工程的研究對象 通常是非常復雜的,主要表現在:①過程本身的復雜性:既有化學的,又有物理的,並且兩者時常同時發生 , 相互影響。②物系的復雜性 : 既有流體(氣體和液體),又有固體,時常多相共存。流體性質可有大幅度變化,如低粘度和高粘度、牛頓型和非牛頓型等。有時,在過程進行中有物性顯著改變,如聚合過程中反應物系從低粘度向高粘度的轉變。③物系流動時邊界的復雜性:由於設備(如塔板、攪拌槳、檔板等)的幾何形狀是多變的,填充物(如催化劑、填料等)的外形也是多變的,使流動邊界復雜且難以確定和描述。
化學工程的研究方法 由於化學工程對象的這些特點,使得解析方法在化學工程研究中往往失效。也從而形成了自己的研究方法(化學工程研究方法),其中有些方法並非首創,而由別的領域移植而來。
早期的研究方法 化學工程初期的主要方法是經驗放大,通過多層次的、逐級擴大的試驗,探索放大的規律。這種經驗方法耗資大、費時長、效果差,人們一直努力試圖擺脫這種處境。但是時至今日,對於一些特別復雜,人們迄今尚知之甚少的過程,還不得不求助於或部分求助於此法。
20 世紀初的研究方法 相當盛行的是相似論和因次分析,其特點是將影響過程的眾多變數通過相似變換或因次分析歸納成為數較少的無因次數(無量綱)群形式,然後設計模型試驗,求得這些數群的關系。用這兩種方法歸納實驗結果,甚為有效。
對於反應過程,逐級的經驗方法沿用了很長時間。由於不可能在滿足幾何相似和物理量相似的同時滿足化學相似條件,用無因次數群關聯實驗結果以獲得反應過程規律的思路歸於無效。
50 年代以後的研究方法 直至 50 年代,才在化學反應工程領域中廣泛應用數學模型方法。這一方法的影響波及到化學工程的其他分支,使研究方法出現了一個革新。但即使採用了這個方法 , 實驗工作仍占重要地位 , 基礎數據要依靠實驗測定,模型要通過實驗得到鑒別,模型參數要由實驗求取,模型可靠性要由實驗驗證。
各種化學工程研究方法的基礎是實驗工作,不論採用哪一種研究方法,都應力求使實驗工作有效、可靠和簡易可行。各種理論、各種方法以及計算機的應用,目的都是為使實驗工作更能揭示事物的規律,更為節省時間、人力和費用。在上述方法的應用中,多方面體現了過程分解(將一個復雜過程分解為兩個或幾個較簡單過程),過程簡化(較復雜過程忽略次要因素而以較簡單過程簡化處理)和過程綜合(在分別處理分解了的過程後,再將這些過程綜合為一)的思想。
重要作用
現代工業生產的規模常要求一套裝置的年產量達數十萬噸或更高。這些裝置必然面臨大量的工程問題,而且指標稍有下降,就會帶來很大的經濟損失。
科學技術的進步,時時刻刻在創造新的產品和新的工藝。但這些新的產品必須藉助工程的手段才能實現工業生產,新的工藝要有經濟和技術的合理性才能取代原有工藝。
上述裝置大型化和新產品、新工藝工業化的問題都屬於化學工程的研究范圍。化學工程在國民經濟中的重要作用是十分明顯的。
例如將大量煙氣中硫、氮氧化物等有害組分脫除後再排放,在實驗室達到要求後,進而要在工業規模中實現大量煙氣的凈化,就必須考慮大規模凈化的經濟性和可行性,著眼點與實驗室研究很不相同。
又如化工生產中 , 要求十分純凈的產品作為原料 , 如高分子化工中常要求聚合前單體的雜質含量是在百萬分之幾 (ppm) 數量級。對於實驗室工作來說 , 這一點並不一定困難,而且小實驗也不要求提純的經濟指標。但是要求大型生產裝置在低消耗和設備簡易可行的條件下做到這一點 , 卻是一個完全不同的課題。這種課題的解決 , 有賴於單元操作的研究。假使在實驗反應器中確定了優選的溫度、濃度和反應時間,獲得了滿意的效果。而在放大過程中,由於流動的不均勻性,物料在反應器中的停留時間(反應時間)出現不均勻,偏離了優選的反應時間。由於反應熱效應,大裝置中因傳熱的限制而出現的溫度不均勻,使反應溫度偏離了優選溫度。溫度的不均勻必然導致濃度的不均勻。這些效應引起大裝置中效率下降,產品成本提高,甚至可能因此失去工業價值而不宜用於生產。這個例子說明化學反應工程研究的作用和意義。
另一個例子是工業生產中為適應各過程的需要,時而需要加熱,時而需要冷卻。在實驗室中能耗指標並不重要,但大生產就必須考慮熱量的合理利用,應盡可能使加熱和冷卻相匹配,盡可能利用低位熱能。如何合理利用熱量,如何合理安排眾多的設備,這一課題,是無法用實驗方法解決的,而是通過化工系統工程的研究解決的。
上述數例說明生產大型化後人們對化學工程知識的緊迫需要。化學工程的成就已能在相當程度上解決這些問題。
發展方向
化學工程面臨著新的挑戰和新的課題,解決這些新課題的過程,必然使化學工程學科得到發展。它的研究范圍和應用前景已遠遠越過了它原有的含義。
化學工程正向兩個方向發展:一方面隨著學科的成熟,不斷向學科的深度發展;另一方面是不斷向新的領域滲透,研究和解決新領域中的新問題。
學科的縱深方向 為了深入掌握過程的規律,對化學工程中經常遇到的多相物系、高粘度流體和非牛頓型流體的傳遞規律進行深入系統研究。這些研究不但有利於解決傳統研究領域的問題,也有助於了解諸如人體內血液流動等新興課題。對反應過程中多重定常穩定態問題的研究,既是反應器設計和操作的需要,也是從另一側面對非線性系統穩定性問題研究所作的貢獻。為了使大型裝置的設計更為迅速可靠,研究了各種物系物性參數、熱力學參數與熱化學參數以及相平衡與化學平衡數據,推動了化工熱力學研究進一步與實際的結合。
在研究方法方面,數學模型方法不斷完善,與之相配合的是,以統計理論和資訊理論為基礎的實驗設計、數據處理、模型的篩選和鑒別以及模型參數估計等方法。為了進行過程的模擬及多方案計算,發展了多種計算機模擬系統,建立了模型庫和資料庫,並從定態模擬發展到為過程式控制制所需要的動態模擬。
向新領域的滲透 這是客觀需要,也是學科發展的動力。在歷史上,化學工程就在各種新過程的開發和優化,在無機化工和石油化工等裝置大型化的推動下得到發展,如大型徑向固定床反應器和催化裂化用流化床反應器的開發技術。在解決石油加工中多組分反應物系處理方法時,發展了集總動力學處理方法,這一方法反過來又可用於處理生物反應過程。在向材料工業滲透過程中,出現了將化學反應工程原理用於聚合過程的聚合反應工程,對於高粘物系傳遞特性的研究則有了實際應用的課題。隨著生物技術的進展 , 出現了生物化學工程 , 以解決生物反應器和生物制劑分離等問題,如超過濾技術等。能源短缺的情況,使人們重視低溫熱源的利用,出現了新型換熱器。為了保護環境,也為了開發海洋資源,要求研究低濃度混合物的分離技術,於是出現了新的分離�%B
⑶ 化學反應工程的研究目標
化學反應工程的早期研究主要是針對流動、傳熱和傳質對反應結果的影響,如德國G.達姆科勒、美國O.霍根和K.M.華生以及蘇聯Α.Д.弗蘭克-卡曼涅斯基等人的工作。當時曾取名化工動力學或宏觀動力學,著眼於對化學動力學作出某些修正以應用於工業反應過程。1947年霍根與華生合著的《化工過程原理》第三分冊中論述了動力學和催化過程。50年代,有一系列重要的研究論文發表於《化學工程科學》雜志,對反應器內部發生的若干種重要的、影響反應結果的傳遞過程,如返混、停留時間分布、微觀混合、反應器的穩定性(見反應器動態特性)等進行研究,獲得了豐碩的成果,從而促成了第一屆歐洲化學反應工程討論會的召開。
50年代末到60年代初,出版了一系列反應工程的著作,如S.M.華拉斯的《化工動力學》,O.列文斯比爾的《化學反應工程》等,使學科體系大體形成。此後,一方面繼續進行理論研究,積累數據,並應用於實踐;另一方面,把應用范圍擴展至較復雜的領域,形成了一系列新的分支。例如:應用於石油煉制工業和石油化工中,處理含有成百上千個組分的復雜反應體系,發展了一種新的處理方法,即集總方法(見反應動力學);應用於高分子化工中的聚合反應過程,出現了聚合反應工程;應用於電化學過程,出現了電化學反應工程;應用於生物化學工業中的生化反應體系,出現了生化反應工程;應用於冶金工業的高溫快速反應過程,出現了冶金化學反應工程等。
⑷ 化學發展的歷史階段
1、萌芽時期
遠古的工藝化學時期。這時人類的制陶、冶金、釀酒、染色等工藝,主要是在實踐經驗的直接啟發下經過多少萬年摸索而來的,化學知識還沒有形成。這是化學的萌芽時期。
2、煉丹術和醫葯化學時期。
從公元前1500年到公元1650年,煉丹術士和煉金術士們,在皇宮、在教堂、在自己的家裡、在深山老林的煙熏火燎中,為求得長生不老的仙丹,為求得榮華富貴的黃金,開始了最早的化學實驗。
記載、總結煉丹術的書籍,在中國、阿拉伯、埃及、希臘都有不少。這一時期積累了許多物質間的化學變化,為化學的進一步發展准備了豐富的素材。
這是化學史上令我們驚嘆的雄渾的一幕。後來,煉丹術、煉金術幾經盛衰,使人們更多地看到了它荒唐的一面。化學方法轉而在醫葯和冶金方面得到了正當發揮。
在歐洲文藝復興時期,出版了一些有關化學的書籍,第一次有了「化學」這個名詞。英語的chemistry起源於alchemy,即煉金術。
chemist至今還保留著兩個相關的含義:化學家和葯劑師。這些可以說是化學脫胎於煉金術和制葯業的文化遺跡了。
3、燃素時期
這個時期從1650年到1775年,是近代化學的孕育時期。隨著冶金工業和實驗室經驗的積累,人們總結感性知識,進行化學變化的理論研究,使化學成為自然科學的一個分支。
這一階段開始的標志是英國化學家波義耳為化學元素指明科學的概念。繼之,化學又借燃素說從煉金術中解放出來。燃素說認為可燃物能夠燃燒是因為它含有燃素。
燃燒過程是可燃物中燃素放出的過程,盡管這個理論是錯誤的,但它把大量的化學事實統一在一個概念之下,解釋了許多化學現象。
4、發展期
這個時期從1775年到1900年,是近代化學發展的時期。1775年前後,拉瓦錫用定量化學實驗闡述了燃燒的氧化學說,開創了定量化學時期,使化學沿著正確的軌道發展。
19世紀初,英國化學家道爾頓提出近代原子學說,突出地強調了各種元素的原子的質量為其最基本的特徵,其中量的概念的引入,是與古代原子論的一個主要區別。
近代原子論使當時的化學知識和理論得到了合理的解釋,成為說明化學現象的統一理論。接著義大利科學家阿伏加德羅提出分子概念。
自從用原子-分子論來研究化學,化學才真正被確立為一門科學。這一時期,建立了不少化學基本定律。俄國化學家門捷列夫發現元素周期律。
德國化學家李比希和維勒發展了有機結構理論,這些都使化學成為一門系統的科學,也為現代化學的發展奠定了基礎。
5、現代化學時期
二十世紀初,量子論的發展使化學和物理學有了共同的語言,解決了化學上許多懸而未決的問題;另一方面,化學又向生物學和地質學等學科滲透,使蛋白質、酶的結構問題得到逐步的解決。
(4)化學反應工程學概念多少年提出擴展閱讀:
化學的歷史淵源非常古老,可以說從人類學會使用火,就開始了最早的化學實踐活動。我們的祖先鑽木取火、利用火烘烤食物、寒夜取暖、驅趕猛獸,充分利用燃燒時的發光發熱現象。
當時這只是一種經驗的積累。化學知識的形成、化學的發展經歷了漫長而曲折的道路。它伴隨著人類社會的進步而發展,是社會發展的必然結果。而它的發展,又促進生產力的發展,推動歷史的前進。
燃素說的影響:
可燃物如炭和硫磺,燃燒以後只剩下很少的一點灰燼;緻密的金屬煅燒後得到的鍛灰較多,但很疏鬆。這一切給人的印象是,隨著火焰的升騰,什麼東西被帶走了。
當冶金工業得到長足發展後,人們希望總結燃燒現象本質的願望更加強烈了。1723年,德國哈雷大學的醫學與葯理學教授施塔爾出版了教科書《化學基礎》。
他繼承並發展了他的老師貝歇爾有關燃燒現象的解釋,形成了貫穿整個化學的完整、系統的理論。《化學基礎》是燃素說的代表作。
舍勒和普里斯特里發現氧氣的製法:
令後人尊敬的瑞典化學家舍勒的職業是葯劑師——chemist,他長期在小鎮徹平的葯房工作,生活貧困。白天,他在葯房為病人配製各種葯劑。一有時間,他就鑽進他的實驗室忙碌起來。
有一次,後院傳來一聲爆鳴,店主和顧客還在驚詫之中,舍勒滿臉是灰地跑來,興奮地拉著店主去看他新合成的化合物,忘記了一切。對這樣的店員,店主是又愛又氣,但從來不想辭退他。
因為舍勒是這個城市最好的葯劑師。到了晚上,舍勒可以自由支配時間,他更加專心致志地投入到他的實驗研究中。對於當時能見到的化學書籍里的實驗,他都重做一遍。
他所做的大量艱苦的實驗,使他合成了許多新化合物,例如氧氣、氯氣、焦酒石酸、錳酸鹽、高錳酸鹽、尿酸、硫化氫、升汞(氯化汞)、鉬酸、乳酸、乙醚等等。
他研究了不少物質的性質和成分,發現了白鎢礦等。至今還在使用的綠色顏料舍勒綠(Scheele』s green),就是舍勒發明的亞砷酸氫銅(CuHAsO3)。
如此之多的研究成果在十八世紀是絕無僅有的,但舍勒只發表了其中的一小部分。直到1942年舍勒誕生二百周年的時候,他的全部實驗記錄、日記和書信才經過整理正式出版,共有八卷之多。
其中舍勒與當時不少化學家的通信引人注目。通信中有十分寶貴的想法和實驗過程,起到了互相交流和啟發的作用。法國化學家拉瓦錫對舍勒十分推崇,使得舍勒在法國的聲譽比在瑞典國內還高。
在舍勒與大學教師甘恩的通信中,人們發現,由於舍勒發現了骨灰里有磷,啟發甘恩後來證明了骨頭裡面含有磷。在這之前,人們只知道尿里有磷。
1775年2月4日,33歲的舍勒當選為瑞典科學院院士。這時店主人已經去世,舍勒繼承了葯店,在他簡陋的實驗室里繼續科學實驗。
由於經常徹夜工作,加上寒冷和有害氣體的侵蝕,舍勒得了哮喘病。他依然不顧危險經常品嘗各種物質的味道——他要掌握物質各方面的性質。
他品嘗氫氰酸的時候,還不知道氫氰酸有劇毒。1786年5月21日,為化學的進步辛勞了一生的舍勒不幸去世,終年只有44歲。