導航:首頁 > 化學知識 > 化學中過程函數有哪些

化學中過程函數有哪些

發布時間:2023-08-20 12:44:11

㈠ 途徑函數和狀態函數的區別

途徑函數和狀態函數的區別如下。1.途徑函數是在求各種熱力學函數時,通常需要作路徑積分(path integral),若積分結果與路徑無關,該函數稱為狀態函數,狀態函數的變化值只取決於系統的始態和終態,與中間變化過程無關。2.途徑函數,有的書中稱非狀態函數,需要知道具體的積分路徑,故不能寫為全微分(如dU),而只能寫為δ的形式。非狀態函數不是不可積分,只是必須告知積分路徑,且路徑不同時結果不同。或者說若起點與終點是同一點積分路徑,繞一環路積分,結果不是零,則所積的結果就不是狀態函數,若一定為零,則可以定義為狀態函數。

㈡ 化學中什麼叫狀態函數什麼叫狀態

在一定的條件下,系統的性質不再隨時間而變化,其狀態就是確定的,系統狀態的一系列表徵系統的物理量被稱為狀態函數。狀態函數,即指表徵體系特性的宏觀性質,多數指具有能量量綱的熱力學函數(如內能、焓、吉布斯自由能、亥姆霍茨自由能)。主要應用於工程領域。

環境中化學物質的原子狀態和分子的結構、元索和各種化 學物種存在的形式叫狀態。

(2)化學中過程函數有哪些擴展閱讀

狀態函數特徵

1、狀態函數的變化值只取決於系統的始態和終態,與中間變化過程無關;並非所有的狀態函數都是獨立的,有些是相互關聯、相互制約的。

例如:對於普通的 溫度-體積 熱力學體系,p(壓強)、V(體積)、T(溫度)、n(物質的量)四個只有三個是獨立的,p與V相互之間常有狀態方程f(p,V)=0相關聯(如理想氣體中pV=nRT)。

2、狀態函數的微變dX為全微分。全微分的積分與積分路徑無關。利用這兩個特徵,可判斷某函數是否為狀態函數。

3、具有單值性。

4、狀態函數的集合(和、差、積、商)也是狀態函數。

㈢ 化學中Qp、Qv、三角形H、三角形U是狀態函數嗎

Qp、Qv——與恆壓、等容過程有關,是過程函數,不是狀態函數;
ΔH、Δu——只與始末狀態有關,是狀態函數。

㈣ 跪求高中化學邊角知識總結!!!

高中化學重要知識點梳理
一、幾個常見的熱點問題
1.阿伏加德羅常數
(1)條件問題:常溫、常壓下氣體摩爾體積增大,不能使用22.4 L/mol。
(2)狀態問題:標准狀況時,H2O、N2O4、碳原子數大於4的烴為液態或固態;SO3、P2O5等為固態,不能使用22.4 L/mol。
(3)特殊物質的摩爾質量及微粒數目:如D2O、18O2、H37Cl等。
(4)某些特定組合物質分子中的原子個數:如Ne、O3、P4等。
(5)某些物質中的化學鍵數目:如白磷(31 g白磷含1.5 mol P-P鍵)、金剛石(12 g金剛石含2 mol C-C鍵)、晶體硅及晶體SiO2(60 g二氧化硅晶體含4 mol Si-O鍵)、Cn(1 mol Cn含n mol單鍵,n/2 mol 雙鍵)等。
(6)某些特殊反應中的電子轉移數目:如Na2O2與H2O、CO2的反應(1 mol Na2O2轉移1 mol電子;Cl2與H2O、NaOH的反應(1 mol Cl2轉移1 mol電子。若1 mol Cl2作氧化劑,則轉移2 mol電子);Cu與硫的反應(1 mol Cu反應轉移1 mol電子或1 mol S反應轉移2 mol電子)等。
(7)電解質溶液中因微粒的電離或水解造成微粒數目的變化:如強電解質HCl、HNO3等因完全電離,不存在電解質分子;弱電解質CH3COOH、HClO等因部分電離,而使溶液中CH3COOH、HClO濃度減小;Fe3+、Al3+、CO32–、CH3COO–等因發生水解使該種粒子數目減少;Fe3+、Al3+、CO32–等因發生水解反應而使溶液中陽離子或陰離子總數增多等。
(8)由於生成小分子的聚集體(膠體)使溶液中的微粒數減少:如1 mol Fe3+形成Fe(OH)3膠體時,微粒數目少於1 mol。
(9)此外,還應注意由物質的量濃度計算微粒時,是否告知了溶液的體積;計算的是溶質所含分子數,還是溶液中的所有分子(應考慮溶劑水)數;某些微粒的電子數計算時應區分是微粒所含的電子總數還是價電子數,並注意微粒的帶電情況(加上所帶負電荷總數或減去所帶正電荷總數)。
2.離子共存問題
(1)弱鹼陽離子只存在於酸性較強的溶液中:Fe3+、Al3+、Zn2+、Cu2+、NH4+、Ag+ 等均與OH–不能大量共存。
(2)弱酸陰離子只存在於鹼性溶液中:CH3COO–、F–、CO32–、SO32–、S2–、PO43–、 AlO2–均與H+不能大量共存。
(3)弱酸的酸式陰離子在酸性較強或鹼性較強的溶液中均不能大量共存。它們遇強酸(H+)會生成弱酸分子;遇強鹼(OH–)會生成正鹽和水:HSO3–、HCO3–、HS–、H2PO4–、HPO42–等。
(4)若陰、陽離子能相互結合生成難溶或微溶性的鹽,則不能大量共存:Ba2+、Ca2+與CO32–、SO32–、PO43–、SO42–等;Ag+與Cl–、Br–、I– 等;Ca2+與F–,C2O42–等。
(5)若陰、陽離子發生雙水解反應,則不能大量共存:Al3+與HCO3–、CO32–、HS–、S2–、AlO2–等;Fe3+與HCO3–、CO32–、AlO2–等。
(6)若陰、陽離子能發生氧化還原反應則不能大量共存:Fe3+與I–、S2–;MnO4–(H+)與I–、Br–、Cl–、S2–、SO32–、Fe2+等;NO3–(H+)與I–、S2–、SO32–、Fe2+等;ClO–與I–、S2–、SO32–等。
(7)因絡合反應或其它反應而不能大量共存:Fe3+與SCN–;Al3+與F–等(AlF63–)。
(8)此外,還有與Al反應反應產生氫氣的溶液(可能H+;可能OH–,含H+時一定不含NO3–);水電離出的c(H+)=10–13 mol/L(可能為酸溶液或鹼溶液)等。
3.熱化學方程式
Q=反應物總能量-生成物總能量
Q>0,放熱反應,Q<0,吸熱反應;
注意:①同一熱化學方程式用不同計量系數表示時,Q值不同;②熱化學方程式中計量系數表示物質的量;③能量與物質的凝聚狀態有關,熱化學方程式中需標明物質的狀態;④Q用「-」表示吸熱;用「+」表示放熱;⑤在表示可燃物燃燒熱的熱化學方程式中,可燃物前系數為1,並注意生成的水為液態。
4.元素周期率與元素周期表
(1)判斷金屬性或非金屬性的強弱
金屬性強弱 非金屬性強弱
①最高價氧化物水化物鹼性強弱 ①最高價氧化物水化物酸性強弱
②與水或酸反應,置換出H2的易難 ②與H2化合的易難或生成氫化物穩定性
③活潑金屬能從鹽溶液中置換出不活潑金屬 ③活潑非金屬單質能置換出較不活潑非金屬單質
(2)比較微粒半徑的大小
①核電荷數相同的微粒,電子數越多,則半徑越大:陽離子半徑<原子半徑<陰離子半徑
如:H+<H<H–;Fe>Fe2+>Fe3+;Na+<Na;Cl<Cl–
②電子數相同的微粒,核電荷數越多則半徑越小.即具有相同電子層結構的微粒,核電荷數越大,則半徑越小。
如:① 與He電子層結構相同的微粒:H–>Li+>Be2+
② 與Ne電子層結構相同的微粒:O2–>F–>Na+>Mg2+>Al3+
③ 與Ar電子層結構相同的微粒: S2–>Cl–>K+>Ca2+
③電子數和核電荷數都不同的微粒
同主族:無論是金屬還是非金屬,無論是原子半徑還是離子半徑從上到下遞增。
同周期:原子半徑從左到右遞減。
同周期元素的離子半徑比較時要把陰陽離子分開。同周期非金屬元素形成的陰離子半徑大於金屬元素形成的陽離子半徑。
例如:Na+<Cl–;第三周期,原子半徑最小的是Cl,離子半徑最小的是Al3+
(3)元素周期結構
(4)位、構、性間關系
5.化學平衡
(1)化學反應速率:aA(g)+bB(g) cC(g)+dD(g)
反應任一時刻:v(A)正∶v(B)正∶v(C)正∶v(D)正=a∶b∶c∶d
v(A)逆∶v(B)逆∶v(C)逆∶v(D)逆=a∶b∶c∶d
平衡時:v(A)正=v(A)逆,v(B)正=v(B)逆,v(C)正=v(C)逆,v(D)正=v(D)逆
(2)外界條件對化學反應速率的影響
① 固體物質的濃度可以視作常數,故其反應速率與固體的用量無關。
② 一般溫度每升高10℃,反應速率增大2~4倍。
③ 壓強隻影響氣體反應的速率。
④ 充入「惰性氣體」:恆溫、恆容:不影響反應速率;
恆溫、恆壓:反應速率減小。
⑤ 催化劑可同等程度的改變正、逆反應速率,影響反應到達平衡的時間,而不能改變反應物的平衡轉化率。
(2)平衡常數(K):只與溫度有關,溫度一定,K為定值。常用於判斷平衡移動的方向和平衡時組分濃度、反應物平衡轉化率等的計算(計算時特別注意平衡常數表達式中使用的是組分的平衡濃度)。
(3)平衡標志
① 宏觀:各組分的濃度相等。
③ 微觀:用同一種物質表示的正、逆反應速率相等。
③ 其他:如氣體顏色、反應物轉化率、產物產率、組分百分含量、氣體密度、氣體相對分子質量等,若平衡移動時該量改變,則不再改變時即達平衡狀態。
(4)平衡移動方向
v正>v逆,平衡正向移動
① 改變條件的瞬間: v正=v逆,平衡不移動
v正<v逆,平衡逆向移動
因此,化學平衡的移動與反應的過程有關,是過程函數,化學平衡移動的方向取決於改變條件瞬間的v正、v逆之間的關系。
② 濃度熵(Q)法:按平衡常數計算式算出改變條件的瞬間值,然後與平衡常數進行比較。
Q<K,平衡正向移動
改變條件的瞬間: Q=K,平衡不移動
Q>K,平衡逆向移動
6.電解質溶液
(1)溶液的導電性:溶液的導電性取決於溶液中自由移動的離子的濃度及離子所帶的電荷數。強電解質溶液的導電性不一定強,相反,弱電解質溶液的導電性不一定弱。
(2)弱電解質的電離程度、能水解鹽的水解程度與電解質濃度間的關系:弱酸或弱鹼的濃度越大,則其酸性或鹼性越強,但其電離程度越小;強酸弱鹼鹽或弱酸強鹼鹽的濃度越大,則其酸性或鹼性越強,但其水解程度越小。
(3)溶液中微粒濃度的比較
① 微粒濃度的大小比較
首先判斷溶液中的溶質;然後根據溶質組成初步確定溶液中微粒濃度間的關系;接著判斷溶液的酸、鹼性(或題中給出);最後根據溶質是否因電離或水解而造成微粒濃度的變化,根據溶液的酸鹼性確定其電離和水解程度的大小,寫出微粒濃度間最終的大小關系。
② 微粒濃度間的守恆關系:
電荷守恆:藉助於離子濃度(或物質的量)表達溶液呈電中性的式子。
物料守恆:溶液中溶質微粒符合溶質組成的式子。
(4)原電極及電解(銅鋅原電池、電解飽和食鹽水、氯化銅溶液)
原電池的負極發生氧化反應,正級發生還原反應;電解過程中陽極發生氧化反應,陰極發生還原反應。
二、無機物的特徵性質與反應
1.常見物質的顏色
(1)焰色反應:Na+(黃色)、K+(紫色,透過藍色鈷玻璃)
(2)有色溶液:Fe2+(淺綠色)、Fe3+(黃色)、Cu2+(藍色)、MnO4–(紫紅色)、Fe(SCN)3(血紅色)
(3)有色固體:紅色:Cu、Cu2O、Fe2O3;紅褐色固體:Fe(OH)3;藍色固體:Cu(OH)2;黑色固體:CuO、FeO、FeS、CuS、Cu2S、Ag2S、PbS;淺黃色固體:S、Na2O2、AgBr;黃色固體:AgI、Ag3PO4(可溶於稀硝酸);白色固體:Fe(OH)2、CaCO3、BaSO4、AgCl、BaSO3等。
(4)反應中的顏色變化
① Fe2+與OH–反應:產生白色絮狀沉澱,迅速轉變成灰綠色,最後變成紅褐色。
② I2遇澱粉溶液:溶液呈藍色。
③ 苯酚中加過量濃溴水:產生白色沉澱(三溴苯酚能溶於苯酚、苯等有機物)。
④ 苯酚中加FeCl3溶液:溶液呈紫色。
⑤ Fe3+與SCN–:溶液呈血紅色。
⑥ 蛋白質溶液與濃硝酸:出現黃色渾濁(蛋白質的變性)。
2.常見的氣體
(1)常見氣體單質:H2、N2、O2、Cl2
(2)有顏色的氣體:Cl2(黃綠色)、溴蒸氣(紅棕色)、NO2(紅棕色)。
(3)易液化的氣體:NH3、Cl2、SO2。
(4)有毒的氣體:F2、O3、HF、Cl2、H2S、SO2、CO、NO(NO、CO均能與血紅蛋白失去攜氧能力)、NO2(制備時需在通風櫥內進行)。
(5)極易溶於水的氣體:NH3、HCl、HBr;易溶於水的氣體:NO2、SO2;能溶於水的氣體:CO2、Cl2。
(6)具有漂白性的氣體:Cl2(潮濕)、O3、SO2。
注意:Cl2(潮濕)、O3因強氧化性而漂白(潮濕Cl2中存在HClO);SO2因與有色物質化合生成不穩定無色物質而漂白;焦碳因多孔結構,吸附有色物質而漂白。
(7)能使石蕊試液先變紅後褪色的氣體為:Cl2(SO2使石蕊試液顯紅色)。
(8)能使品紅溶液褪色的氣體:SO2(加熱時又恢復紅色)、Cl2(加入AgNO3溶液出現白色沉澱)。
(9)能使無水硫酸銅變藍的氣體:水蒸氣。
(10)能使濕潤的碘化鉀澱粉試紙變藍的氣體:Cl2、Br2、NO2、O3。
(11)不能用濃硫酸乾燥的氣體:NH3、H2S、HBr、HI。
(12)不能用無水CaCl2乾燥的氣體:NH3(原因:生成:CaCl2•8NH3)。
3.有一些特別值得注意的反應
(1)單質+化合物1 化合物2
2FeCl2+Cl2 2FeCl3 4Fe(OH)2+O2+2H2O 4Fe(OH)3
2Na2SO3+O2 2Na2SO4 2FeCl3+Fe 3FeCl2
(2)難溶性酸、鹼的分解
H2SiO3 SiO2+H2O Mg(OH)2 MgO+H2O
2Fe(OH)3 Fe2O3+3H2O 2Al(OH)3 Al2O3+3H2O
(3)不穩定性酸、鹼的分解
2HClO 2HCl+O2↑ 4HNO3 4NO2↑+O2↑+2H2O
NH3•H2O NH3↑+H2O H2SO3 SO2↑+H2O
(4)不穩定性鹽的分解
NH4Cl NH3↑+HCl↑ 2AgBr 2Ag+Br2
CaCO3 CaO+CO2↑ 2NaHCO3 Na2CO3+CO2↑+H2O;
(5)金屬置換金屬:Fe+Cu2+ Cu+Fe2+、2Al+Fe¬2O3 2Fe+Al2O3
(6)金屬置換非金屬:2Na+2H2O 2NaOH+H2↑ Zn+2H+ Zn2++H2↑
2Mg+CO2 2MgO+C 3Fe+4H2O Fe3O4+4H2↑
(7)非金屬置換非金屬:2F2+2H2O 4HF+O2 Cl2+H2S(HBr、HI) 2HCl+S(Br2、I2)
2C+SiO2 Si+2CO↑ C+H2O CO+H2
3Cl2+2NH3 N2+6HCl Si+4HF SiF4+2H2
(8)非金屬置換金屬:H2+CuO Cu+H2O C+2CuO 2Cu+CO2↑
4.一些特殊類型的反應
(1)化合物+單質 化合物+化合物
Cl2+H2O HCl+HClO 2H2S+3O2 2SO2+2H2O
4NH3+5O2 4NO+6H2O CH4+2O2 CO2+2H2O
(2)化合物+化合物 化合物+單質
4NH3+6NO 5N2+6H2O 2H2S+SO2 3S+2H2O
2Na2O2+2H2O 4NaOH+O2↑ NaH+H2O NaOH+H2↑
2Na2O2+2CO2 2Na2CO3+O2 CO+H2O CO2+H2
(3)一些特殊化合物與水的反應
① 金屬過氧化物:2Na2O2+2H2O 4NaOH+O2↑
② 金屬氮化物:Mg3N2+3H2O 3Mg(OH)2+2NH3↑
③ 金屬硫化物:Al2S3+6H2O 2Al(OH)3+3H2S↑
CaS+2H2O Ca(OH)2+H2S↑
④ 金屬碳化物:CaC2+2H2O Ca(OH)2+C2H2↑
Al4C3+12H2O 4Al(OH)3+3CH4↑
⑤ 金屬氫化物:NaH+H2O NaOH+H2↑
⑥ 金屬磷化物:Ca3P2+6H2O 3Ca(OH)2+2PH3↑
⑦ 非金屬的鹵化物:NCl3+3H2O NH3+3HClO PCl3+3H2O H3PO3+3HCl
SiCl4+3H2O H2SiO3+4HCl SOCl2+H2O 2HCl+SO2↑
(4)雙水解反應
① Al3+(或Fe3+)與HCO3–、CO32–:Al3++3HCO3– Al(OH)3↓+3CO2↑
2Al3++3CO32–+3H2O 2Al(OH)3↓+3CO2↑
② Al3+與HS–、S2–:Al3++3HS–+3H2O Al(OH)3↓+3H2S↑
2Al3++3S2–+6H2O 2Al(OH)3↓+3H2S↑
③ Al3+與AlO2–:Al3++3AlO2–+6H2O 4Al(OH)3↓
(5)一些高溫下的反應
3Fe+4H2O Fe3O4+4H2↑ 2Al+Fe¬2O3 2Fe+Al2O3
C+H2O CO+H2 CaCO3 CaO+CO2↑
CaCO3+SiO2 CaSiO3+CO2↑ Na2CO3+SiO2 Na2SiO3+CO2↑
(6)能連續被氧化的物質
① 單質:Na Na2O Na2O2 C CO CO2
N2 NO NO2 P P2O3 P2O5 S SO2 SO3
② 化合物:CH4 CO CO2 NH3 NO NO2
H2S S(或SO2) SO2 SO3 CH3CH2O CH3CHO CH3COOH
CH3OH HCHO HCOOH CO2
三、有機化學
1.三類物質中氫的活潑性比較
Na(置換) NaOH(中和) Na2CO3 NaHCO3
C2H5-OH H2↑ —— —— ——
C6H5-OH H2↑ C6H5ONa NaHCO3 ——
CH3COOH H2↑ CH3COONa CO2↑ CO2↑
2.常見試劑的常見反應
(1)溴單質
① 只能是液溴: 與飽和碳原子上氫的取代反應(光照或加熱)
與苯環上氫的取代反應(催化劑)
② 可以是溴水(或溴的四氯化碳溶液): 不飽和烴(烯烴或炔烴)的加成反應
酚類物質中苯環上的取代反應
含醛基物質的氧化反應
(2)NaOH
① NaOH水溶液: 鹵代烴的取代反應(1 mol與苯環直接相連的鹵原子水解需2 mol NaOH)
酯的水解反應(1 mol 酚酯消耗2 mol NaOH)
與羧酸或酚羥基的中和反應
蛋白質或多肽的水解
② NaOH醇溶液:鹵代烴的消去反應
(3)新制Cu(OH)2懸濁液: 與羧酸的反應
含醛基物質的氧化反應
(4)銀氨溶液:含醛基物質的氧化反應
(5)H2SO4: 作催化劑:苯的硝化或醇的消去反應;酯或蛋白質的水解反應
反應物:苯的磺化反應;與醇的酯化反應
強酸性:與CH3COONa加熱蒸餾制CH3COOH
(6)酸性高錳酸鉀: 烯烴、炔烴等不飽和烴的氧化反應
苯環側鏈(與苯環相連的第一個碳上有氫)的氧化反應
醇的氧化反應
含醛基物質的氧化反應
(7)FeCl3:含酚羥基物質的顯色反應
(8)HNO3: 苯的硝化反應(苯與濃硫酸、濃硝酸的混酸反應)
遇蛋白質顯黃色(蛋白質分子中含苯環
與甘油、纖維素等的酯化反應
3.反應條件和反應試劑對有機反應的影響
(1)反應條件
(催化劑時苯環上取代)
(光照或加熱時飽和碳上取代)
CH2=CH-CH3+Cl2 CH2=CH-CH2-Cl+HCl
CH2=CH-CH3+HBr (氫加在含氫較多碳原子上,符合馬氏規則)
CH2=CH-CH3+HBr CH3-CH2-CH2-Br(反馬氏加成)
(2)溫度不同
2CH3CH2OH CH3CH2OCH2CH3+H2O
(2)溶劑影響
CH3¬CH2Br+NaOH CH3CH2OH CH3CH2Br+NaOH CH2=CH2↑+NaBr+H2O
(3)試劑濃度影響
CH3COOH+CH3CH2OH CH3COOCH2CH3+H2O
CH3COOCH2CH3+H2O CH3COOH+CH3CH2OH
(3)溶液酸鹼性影響
R-OH+HX R-X+H2O R-X+H¬2O R-OH+HX
CH3COOCH2CH3+H2O CH3COOH+CH3CH2OH
CH3COOCH2CH3+NaOH CH3COONa+CH3CH2OH
4.官能團間的演變

5.有機中常見的分離和提純
(1)除雜(括弧內為雜質)
① C2H6(C2H4、C2H2):溴水,洗氣(或依次通過酸性高錳酸鉀溶液、NaOH溶液,洗氣)
② C6H6(C6H5-CH3):酸性高錳酸鉀溶液、NaOH溶液,分液
③ C2H5-Br(Br2):Na2CO3溶液,分液(主要考慮C2H5Br在NaOH條件下能水解)
④ C6H5-Br(Br2):NaOH溶液,分液
⑤ C2H5-OH(H2O):加新制生石灰,蒸餾
⑥ C6H6(C6H5-OH):NaOH溶液,分液(或直接蒸餾)
⑦ CH3COOC2H5(CH3COOH、C2H5OH):飽和碳酸鈉溶液,分液
⑧ C2H5OH(CH3COOH):NaOH,蒸餾
(2)分離
① C6H6、C6H5OH:NaOH溶液,分液,上層液體為苯;然後在下層液體中通過量的CO2,分液,下層液體為苯酚(或蒸餾收集不同溫度下的餾分)
② C2H5OH、CH3COOH:NaOH,蒸餾收集C2H5OH;然後在殘留物中加硫酸,蒸餾得CH3COOH。
四、化學實驗
1.化學實驗中的先與後
(1)加熱試管時,應先均勻加熱後局部加熱。
(2)用排水法收集氣體結束時,先移出導管後撤酒精燈。
(3)製取氣體時,先檢查裝置氣密性後裝葯品。
(4)稀釋濃硫酸時,應將濃硫酸慢慢注入水中,邊加邊攪拌。
(5)點燃H2、CH4、C2H4、C2H2等可燃氣體時,先檢驗氣體的純度。
(6)檢驗鹵化烴分子的鹵元素時,在水解後的溶液中先加稀HNO3中和鹼液再加AgNO3溶液。
(7)檢驗NH3(用紅色石蕊試紙)、Cl2(用澱粉KI試紙)等氣體時,先用蒸餾水潤濕試紙後再與氣體接觸。
(8)中和滴定實驗時,用蒸餾水洗過的滴定管、移液管先用待裝液潤洗。
(9)焰色反應實驗時,每做一次,鉑絲應先沾上稀鹽酸放在火焰上灼燒到無色時,再做下一次實驗。
(10)H2還原CuO時,先通H2後加熱,反應完畢後先撤酒精燈,冷卻後再停止通H2。
(11)檢驗蔗糖、澱粉水解產物時,先加NaOH中和催化作用的硫酸,再加新制Cu(OH)2懸濁液或銀氨溶液。
2.中學化學實驗中的溫度計
(1)測液體的溫度:如測物質溶解度;實驗室制乙烯等。
(2)測蒸氣的溫度:如實驗室蒸餾石油;測定乙醇的沸點等。
(3)測水浴溫度:如溫度對反應速率影響的反應;苯的硝化反應;苯的磺化反應;制酚醛樹脂;銀鏡反應;酯的水解等。
3.常見實驗裝置
(1)氣體發生裝置:固、固加熱型;固、液不加熱型;固(液)、液加熱型。

(2)各種防倒吸裝置——用於防止液體的倒吸。

(3)常見的凈化裝置和尾氣吸收裝置
① 常見的凈化裝置——用於除去氣體中的雜質氣體。

② 常見的尾氣吸收裝置——用於吸收尾氣。

(4)常見的量氣裝置——通過排液法測量氣體的體積。

(5)過濾、蒸餾、分液裝置

4.物質的分離和提純
(1)物質分離提純的常用方法
方法 適用范圍 舉例
過濾 分離不溶性固體和液體混合物 粗鹽提純時,將粗鹽溶於水,過濾除去不溶性雜質
結晶 分離溶解度隨溫度變化差別大的固體混合物 分離KNO3和NaCl的混合物
蒸發 除去溶液中的揮發性溶劑 從食鹽水中提取食鹽
蒸餾 分離沸點差別大的液體混合物 由普通酒精製取無水酒精
萃取 提取易溶於某種溶劑的物質 用CCl4提取I2水中的I2
分液 分離互不相溶的液體混合物 分離水和苯的混合物
(2)物質分離提純的常用化學方法
①溶解法:利用特殊的溶劑(或試劑)把雜質溶解而除去,或提取出被提純物質的一種方法。
②沉澱法:利用沉澱反應將雜質轉化為沉澱而除去,或將被提純物質轉化為沉澱而分離出來。
③轉化法:將雜質轉化為被提純物質而除去的一種方法。
④加熱分解法:通過加熱將雜質轉化成氣體而除去的一種方法。
⑤酸鹼法:通過加酸、鹼調節溶液的pH,從而使雜質轉化為沉澱而除去。
⑥氧化還原法:通過加氧化劑或還原劑,將雜質轉化為氣體、沉澱或其它物質而除去。
⑦離子交換法:通過離子交換樹脂除去溶液中的特定離子。
5.常見離子的檢驗方法
離子 檢驗方法 主要現象
H+ 酸鹼指示劑;活潑金屬Zn;碳酸鹽等 變色,產生氫氣,產生CO2氣體
Na+、K+ 焰色反應 鈉「黃」鉀「紫」
Al3+ OH– 先生成白色沉澱,後白色沉澱溶解形成無色溶液
Fe3+ KSCN溶液,NaOH溶液 溶液變紅色,生成紅褐色沉澱
NH4+ NaOH溶液、加熱 生成能使濕潤的紅色石蕊試紙變藍的氣體
OH– 酚酞溶液 溶液變紅色
Cl– AgNO3、稀硝酸 生成不溶於稀硝酸的白色沉澱
SO42– 稀HCl、BaCl2溶液 生成不溶於HCl的白色沉澱
CO32– 鹽酸、澄清石灰水 生成使澄清石灰水變渾濁的無色無味氣體
五、物質結構與性質
1.原子結構與性質
原子核:同位素、原子量——物理性質
(1)原子(AZX)
核外電子——化學性質
(2)元素的化學性質主要由原子最外層電子數和原子半徑決定。
例如:最外層電子數相等,半徑不等(同主族元素),性質出現遞變性;
Li和Mg、Be和Al的最外層電子數不等,半徑相近,性質相似。
(3)原子核外電子排布(掌握1~36號元素)
① 能量最低原理:電子先排能量低的能層和能級,然後由里往外排能量高的(能層和能級均影響電子的能量)。
② 泡里不相容原理:每個原子軌道上最多排2個自旋相反的電子,即原子核外沒有2個電子的運動狀態完全相同。
③ 洪特規則:電子在能量相同的各個軌道上排布時,電子盡可能分佔不同的原子軌道;
當軌道上電子呈半滿、全滿或全空時,體系能量最低。
2.分子結構與性質
(1)化學鍵——化學性質(決定分子的穩定性)
離子鍵 共價鍵 金屬鍵
成鍵微粒 陰、陽離子 原子 金屬離子和自由電子
微粒間相互作用 靜電作用 共用電子對 靜電作用
成鍵原因 活潑金屬(如ⅠA、ⅡA)和活潑非金屬(如ⅥA、ⅦA) 成鍵原子具有未成對電子 金屬
(2)化學鍵理論
① 8電子穩定結構
②等電子原理
a.具有相同原子數目和相同電子總數(或價電子總數)的分子或離子具有相同的結構特徵。
b.常見等電子體:N2、CO、CN–、C22–(電子總數為14e–,存在叄鍵);
CO2、CS2、COS、BeCl2、N3–、OCN–、SCN–(價電子數為16e–,均為直線型);
BCl3、CO32–、SiO32–、NO3–(價電子數為24e–,均為平面正三角形);
NCl3、PCl3、NF3、PF3、SO32–(價電子數為24e–,均為三角錐形);
SiCl4、CCl4、SiO44–、SO42–、PO43–(價電子數為24e–,均為正四面體形)。
(3)分子極性:分子中正、負電荷重心是否重合
① 與鍵的極性有關;② 與分子的空間構型有關。
類型 實例 鍵角 鍵的極性 空間構型 分子的極性
A2 H2、N2、Cl2等 ― 非極性鍵 直線形 非極性分子
AB HCl、NO、CO等 ¬― 極性鍵 直線形 極性分子
AB2 CO2、CS2等 180° 極性鍵 直線形 非極性分子
H2O、H2S等 <180° 極性鍵 「V」形 極性分子
SO2分子 120° 極性鍵 三角形 極性分子
AB3 BF3分子 120° 極性鍵 三角形 非極性分子
NH3、PCl3等分子 <109.5° 極性鍵 三角錐形 極性分子
AB4 CH4、CCl4等分子 109.5° 極性鍵 正四面體形 非極性分子
(4)相似相溶原理:極性相似,相互溶解,極性相差越大,則溶解度越小。
如:水為強極性分子,強極性的HX、NH3等易溶於水;
有機物均為弱極性或非極性分子,有機物間可相互溶解。
(5)共價鍵的類型
電子對是否偏移:極性鍵和非極性鍵。
(6)分子間作用力及氫鍵——物理性質
① 分子間作用力——范德華力
對於分子組成和結構相似的物質,其相對分子質量越大,范德華力越大,熔、沸點越高。
例如:沸點 F2<Cl2<Br2<I2。
② 氫鍵(選學)
a.形成氫鍵的因素:含N、O、F,且含有與N、O、F直接相連的H。
b.氫鍵對物質性質的影響:分子間氫鍵的形成,使物質在熔化或汽化的過程中,還需克服分子間的氫鍵,使物質的熔、沸點升高;分子間氫鍵的形成,可促進能形成氫鍵的物質之間的相互溶解。
3.晶體結構與性質——物理性質
(1)晶體類型及其性質
離子晶體 分子晶體 原子晶體 金屬晶體
組成微粒 陰、陽離子 分子 原子 金屬離子和自由電子
微粒間的相互作用 離子鍵 分子間作用力 共價鍵 金屬鍵
是否存在單個分子 不存在 存在 不存在 不存在
熔、沸點 較高 低 很高 高低懸殊
硬度 較大 小 很大 大小懸殊
導電情況 晶體不導電,
溶於水或熔融狀態下導電 晶體或熔融狀態下不導電,
溶於水時部分晶體能導電 晶體為半導體或絕緣體 晶體導電
(2)晶體熔、沸點高低的比較
一般規律:原子晶體>離子晶體>分子晶體。
① 離子晶體:離子晶體的晶格能越大,則離子鍵越強,晶體熔、沸點越高。
晶格能比較:陰、陽離子所帶電荷越多,半徑越小,則晶格能越大。
例如:MgO>NaCl(Mg2+半徑小,所帶電荷多)。
FeO>NaCl(Fe2+與Cl–電子層數相同,O2–與Na+電子層數相同,但FeO中離子所帶電荷數多)
② 分子晶體:組成和結構相似的分子晶體,相對分子質量越大,分子間作用力越強,晶體的熔、沸點越高。
例如:F2<Cl2<Br2<I2。
此外,當分子形成分子間氫鍵時,分子晶體的熔、沸點升高。
例如:NH3、H2O、HF的熔、沸點均比同主族下一周期的氫化物來的高。
③ 原子晶體:原子半徑越小,鍵長越短,鍵能越大,鍵越牢固,晶體的熔、沸點越高。
例如:金剛石>二氧化硅>金剛砂>晶體硅。
④ 金屬晶體:金屬離子所帶電荷越多,半徑越小,金屬鍵越強,晶體的熔、沸點越高。
例如:Na<Mg<Al。
(3)金屬晶體
金屬的導電性、導熱性和延展性等物理性質均與金屬鍵有關。
六、化學與環境
1.臭氧空洞
(1)污染物:CF2Cl2、NOx等
(2)機理:CF2Cl2在高空紫外線作用下產生氯原子,作O3分解的催化劑。NOx直接作O3分解的催化劑。
(3)危害:紫外輻射增強使患呼吸系統傳染病的人增加;受到過多的紫外線照射還會增加皮膚癌和白內障的發病率;強烈的紫外輻射促使皮膚老化;使城市內的煙霧加劇,使橡膠、塑料等有機材料加速老化,使油漆褪色等。
2.酸雨(pH小於5.6)

㈤ 大學無機化學狀態函數有哪些

大學無機化學狀態函數有:焓H、熵S、內能U、自由能G。這些都是狀態函數。

㈥ 狀態函數

熱力學體系的性質是隨體系狀態的變化而變化的,體系的這些性質又稱為狀態函數。用以描述地球化學體系的狀態函數主要有自由能(G)、功函(F)、內能(U)、焓(H)、熵(S)、溫度(T)、壓力(P)、體積(V)、化學位(μ)。

由式(4.1),對於封閉體系,第一、第二定律的結合式可表述為:

dU=TdS-PdV (4.3)

式(4.3)稱為第一和第二定律的聯合形式,它適用於封閉體系的可逆過程。此式中包括了描述體系熱力學性質的所有主要變數 P,V,T,U,S。其他熱力學變數,如焓(H)、功函(F)和自由能(G)都可以由它們推演而得,它們的表達式的微分形式分別為:

焓(H): dH=TdS-VdP (4.4)

功函(F): dF=-SdT-PdV (4.5)

自由能(G): dG=-SdT+VdP (4.6)

對於多相多組分體系,上述表達式中還應加入化學位的貢獻:

地球化學原理與應用

地球化學原理與應用

地球化學原理與應用

地球化學原理與應用

不同類型變數表徵的特徵函數用於處理不同條件下的熱力學問題。地球化學研究中主要涉及T和P及與化學位有關的組分活度ai為變數的熱力學問題,因而自由能G在地球化學熱力學中具有重要地位。

㈦ 化學中什麼叫狀態函數,T,Q,P,U這四個函數哪個是狀態函數,為什麼

狀態函數的定義就是只和系統當時的狀態有關,與它所經歷的過程無關的描述一個系統某個狀態的函數。
T,P是狀態函數,它和一個系統之前經歷的路徑無關,是描述一個狀態的,比如現在的溫度是273.15K,和它是有100K變到273.15K,還是200K變到273.15K無關,現在這個狀態就是273.15K
而Q和U不是狀態函數,因為無法測量出一個系統的Q和U,只能通過一個狀態到另一個狀態,它們的變化量得到一個值,那麼這個值肯定就和它經歷的路徑有關系。
剛復習完物化,一點淺見。

閱讀全文

與化學中過程函數有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:658
乙酸乙酯化學式怎麼算 瀏覽:1327
沈陽初中的數學是什麼版本的 瀏覽:1264
華為手機家人共享如何查看地理位置 瀏覽:951
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:802
數學c什麼意思是什麼意思是什麼 瀏覽:1319
中考初中地理如何補 瀏覽:1215
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:625
數學奧數卡怎麼辦 瀏覽:1293
如何回答地理是什麼 瀏覽:946
win7如何刪除電腦文件瀏覽歷史 瀏覽:978
大學物理實驗干什麼用的到 瀏覽:1400
二年級上冊數學框框怎麼填 瀏覽:1608
西安瑞禧生物科技有限公司怎麼樣 瀏覽:749
武大的分析化學怎麼樣 瀏覽:1165
ige電化學發光偏高怎麼辦 瀏覽:1257
學而思初中英語和語文怎麼樣 瀏覽:1550
下列哪個水飛薊素化學結構 瀏覽:1345
化學理學哪些專業好 瀏覽:1411
數學中的棱的意思是什麼 瀏覽:967