導航:首頁 > 化學知識 > 德國化學怎麼樣

德國化學怎麼樣

發布時間:2022-04-27 15:58:08

㈠ 德國化工碩士或博士的就業待遇和發展前景

德國的化工是相當難學,介於機械和化學之間。

他分成工藝工程和化學工程兩大塊process engineering & chemical enngineering, 前者偏機械適合找工作,後面偏化學。

課程難度很大,偏重流體力學和物理化學。數學要求很高,比如國內1門物理化學,德國是分為熱力學1&2, 化學熱力學,界面化學,單獨的物理化學等好幾門課程的。考試自己做數學微積分推導解題。很多國內比較新的化工技術在德國都是很成熟的,並且早就用於課程實踐當中。

去不去德國,看你能否順利完成學業,是否是一個積極並且有克制力的人,否則時間拖久了畢不了業人會很壓抑。

你如果能德國畢業回國進國企,當然是最好,有學歷技術關系。留在德國花些時間找工作問題也不是很大,前提是找到德國企業的實習機會和到企業寫論文。

德國畢業生待遇都差不了多少,4萬到5萬歐之間,其中40%交稅,保險,養老金等。

㈡ 德國斯圖加特大學化學專業怎麼樣

斯圖加特大學是德國頂尖工業大學聯盟TU9的成員之一,2017QS世界排名第263位,德國第16位,大概和中國的北京師范大學和武漢大學排在同一個檔次。
斯圖加特大學在2014CHE德國化學專業排名上,排名德國第27位,算是德國中等偏上的水準。CHE,全稱Center for Higher Ecation,中文名「德國高等教育中心」,是德國大學排名比較主要的發行者。
斯圖加特大學化學專業在2016年QS化學排名上,排名世界第151-200段,德國是第11名,和中國的南開大學、華東理工大學處於同一個檔次。
至於考試難度、畢業難度這些,德國教育算是嚴進嚴出的,不努力自然有難度,努力了,對中國學生而言不存在問題。
參考資料:http://www.qianmu.org/ranking/1488.htm

㈢ 211 985化工專業,到德國留學怎麼樣

留學選校,可以把你這些GPA、語言成績、專業等信息輸入到這個留學志願參考系統中去,系統會自動從資料庫中匹配出與你情況相似的同學案例,看看他們成功申請了哪些院校和專業,這樣子就可以看到你目前的水平能申請到什麼層次的院校和專業了,對自己進行精準的定位。
留學志願參考系統地址:https://site.douban.com/292919/widget/notes/193266604/note/633781249/

㈣ 日本和德國化學研究生哪個好

日本。
日本作為傳統的製造業強國,化工專業一直是日本的強項。日本有大量的化學系和材料系企業可以供化工的學生選擇。絕大部分日本國公立綜合大學有化工專業,私立大學也有化工專業。因此,無論是學校還是將來的就職,對於化工專業的學生來說,完全不用擔心沒有選擇。日本的留學難度還是比較低的,只要你能學好日語的話幾乎所有人都能留學日本。日語作為少數使用漢字的語言,對於留學生而言容易上手。

㈤ 化學專業在德國深造怎樣,好不好

德國的化學很厲害的,怎麼說呢,現在化學出國挺容易的,主要是外國人都不怎麼搞化學,毒性太大,在國外的科研環境要比國內好很多,讀研究生導師給的錢也比較多,國內很差勁,導師都是壓榨學生,讀化學最好的三個國家我認為是美國英國和德國。

㈥ 德國應用化學 怎麼樣

《德國應用化學》在國際化學研究領域具有很強的影響力,通常僅報道具有高度原創性且對整個化學科學研究領域有廣泛影響的研究成果。2018年公布的影響因子為12.102。

㈦ 德國留學學化學哪個學校比較好費用大概多少

樓上的說得不都對。
德國化工是不錯,很多學校都不錯。例如柏林工大,斯圖加特卡爾斯魯厄工大等。
但是。德國是不要學費的,現在開始收注冊費,一個學期500歐左右。一年的生活費,如果不亂花錢的話,4000到5000歐元是可以的。

㈧ 德國在19世紀末一戰前化學工業有了全歐洲最雄厚的實力,請問是什麼因素使得德意志在化學領域能夠有如此...

19世紀30年代當英國工業革命即將完成的時候,四分五裂的德意志開始走上了工業革命的道路。1834年以普魯士為首的18個邦國建立了德意志關稅同盟,取消同盟內的關稅壁壘,制定統一的稅制,加速了商品的流通,有力地推動了德國工業的發展。紡織工業捷足先登,1846年關稅同盟各部已建成313家紡織廠,薩克森的開姆尼茲成為棉紡織業的中心。采礦業和冶金業也得到一定發展,但主要仍集中在礦區所在地的山區,用當地的礦砂、木炭和水力作為原料和動力煉鐵。40年代末魯爾煤礦的開發,以煤代炭進行冶煉多了起來,冶鐵中心才從山區轉到魯爾區。1835年從紐倫堡至費爾特的第一條鐵路通車。1848年德國的鐵道線達到2500公里。但是從整體看來,19世紀中期以前的德國工業仍以手工工場和小手工業為主。1848年時,手工工人佔全德工人總數的2/3以上。19世紀中期以後,德國工業才迅速發展起來。

從19世紀初施泰因——哈登堡改革開始,到50年代,普魯士政府陸續不斷地進行農業方面的改革,容克經濟完全走上了資本主義道路,農業機械化水平大為提高。這一改革也影響到其他一些鄰國。1850—1870年德國農業凈產值從50億馬克增長至67億馬克。農業的發展,在原料、市場、勞動力等方面配合了正在進行的工業革命。

到1852年,關稅同盟擴大到德國全境,以經濟為紐帶,突破政治分裂狀態,把全德意志連結成統一的國內市場,大大促進了資本主義工商業的發展。50—60年代德國出現了工業高漲。各種名目繁多的信貸機構和股份公司也紛紛出現,它們集中社會游資投入工業生產,在很大程度上克服了工業資金不足的弱點。全德統一市場的形成促進了交通運輸業的大發展。1850—1870年德國掀起了修築鐵路的熱潮,鐵路線長度增加幾倍,達到1.88萬公里。鐵路運貨量增長了27倍。修築鐵路對冶金業及相關的其他工業有很大刺激。1850—1870年德國的煤產量增加了4.1倍,生鐵產量增加了5.6倍,鋼產量增加了近28倍。恩格斯說,1848年革命後,德國「在20年中帶來的成就比以前整整1個世紀還要多」①。在50—60年代德國的工業高漲中,重工業的發展最為突出。這就為德國較快地發展成資本主義工業強國奠定了基礎。

德意志統一的完成,為德國經濟的發展開辟了更廣闊的前景。德意志帝國政府於1873年建立了帝國銀行,實行了金本位貨幣制度,統一了商業法規和度量衡,對交通運輸業進行統一管理,實施了保護關稅政策。所有這些措施對最終消除分裂狀態,加強國內統一市場和促進經濟向更高層次發展創造了極為有利的條件。

普法戰爭後對法國的掠奪為德國經濟的發展帶來了巨大好處。50億法郎的賠款有相當一部分轉化為工業資本。割占來的阿爾薩斯蘊藏著重要的非金屬礦鉀鹽,洛林則是重要的鐵礦石產地,儲量佔全法鐵礦總儲量的85%。鉀鹽對德國化學工業的發展有重要價值。洛林的鐵礦給魯爾產煤區的冶金工業注入了新血液,使魯爾很快成為德國的鋼鐵基地。今天聯邦德國7大鋼鐵財團中最大的4個,包括著名的克虜伯公司,就都在魯爾區。

德國工業革命的重要特點之一,是它對新的科學技術成果的運用。這與它重視教育,注意科學研究與生產發展的結合有著密切的關系。早在19世紀20年代,德意志許多邦就開始實行強制性義務教育並大力興辦職業學校。德國是19世紀後半期文盲率最低的國家。德國的高等教育既注重基礎理論的教學,又重視應用科學的研究。19世紀20年代,著名化學家李比西在基森大學創辦的化學實驗室,被譽為化學家的搖籃。哥根丁大學成為數學家的薈萃之地。70年代又建立起許多國家級的科研機構,如國立物理研究所、國立化工研究所和國立機械研究所等等。德意志民族在工藝技巧、科學文化水平及實際運用能力方面都居歐洲之冠,擁有許多高級專門人才。19世紀後半期,英國科學家法拉第提出的電磁感應定律,在德國得以付諸實踐,1867年西門子製成了第一台發電機。德國的酸、鹼等有機合成工業也有很大的進展。TNT炸葯也是這一時期發明的。如此等等。到19世紀80年代,德國的煤、生鐵和鋼的產量已分別達到5910萬噸、273萬噸和62萬噸,進入世界先進行列。1889年工業總產值超過農業,德國成為工業國家。德國工業革命起步較晚,但發展迅速。而且,它的第一次工業革命的完成和第二次工業革命的開始是交錯在一起的。

㈨ 我是學化學的,想去德國留學,不知道德國的化學怎麼樣,請詳細說明一下,有加分,材料的也可以

化學和材料都挺強的

㈩ 德國化學對世界的影響

20世紀化學的輝煌成就
20世紀人類對物質需求的日益增加以及科學技術的迅猛發展,極大的推動了化學學科自身的發展。化學不僅形成了完整的理論體系,而且在理論的指導下,化學實踐為人類創造了豐富的物質。從19世紀的經典化學到20世紀的現代化學的飛躍,從本質上說是從19世紀的道爾頓原子論、門捷列夫元素周期表等在原子的層次上認識和研究化學,進步到20世紀在分子的層次上認識和研究化學。如對組成分子的化學鍵的本質、分子的強相互作用和弱相互作用、分子催化、分子的結構與功能關系的認識,以至1900多萬種化合物的發現與合成;對生物分子的結構與功能關系的研究促進了生命科學的發展。另一方面,化學過程工業以及與化學相關的國計民生的各個領域,如糧食、能源、材料、醫葯、交通、國防以及人類的衣食住行用等,在這100年中發生的變化是有目共睹的。過去的100年間化學學科的重大突破性成果可從歷屆諾貝爾化學獎獲得者的重大貢獻中獲悉

歷屆諾貝爾化學獎獲獎簡況

獲獎年份獲獎者國籍獲獎成就
1901J. H. van』t Hoff荷蘭溶劑中化學動力學定律和滲透壓定律
1902E. Fisher德國糖類和嘌啉化合物的合成
1903S. Arrhenius瑞典電離理論
1904W. Ramsay英國惰性氣體的發現及其在元素周期表中位置的確定
1905A. von Baeyer德國有機染料和氫化芳香化合物的研究
1906H. Moissan法國單質氟的制備,高溫反射電爐的發明
1907E. Buchner德國發酵的生物化學研究
1908E. Rutherford英國元素嬗變和放射性物質的化學研究
1909W. Ostwald德國催化、電化學和反應動力學研究
1910O.Wallach德國脂環族化合物的開創性研究
1911M.Curie波蘭放射性元素釙和鐳的發現
1912V. Grignard
P. Sabatier法國
法國格氏試劑的發現
有機化合物的催化加氫
1913A. Werner瑞士金屬絡合物的配位理論
1914Th. Richards美國精密測定了許多元素的原子量
1915R. Willstatter德國葉綠素和植物色素的研究
1916無
1917無
1918F.Haber德國氨的合成
1919無
1920W. Nernst德國熱化學研究
1921F. Soddy英國放射性化學物質的研究及同位素起源和性質的研究
1922F. W. Aston英國質譜儀的發明,許多非放射性同位素及原子量的整數規則的發現
1923F. Pregl奧地利有機微量分析方法的創立
1924無
1925R. Zsigmondy德國膠體化學研究
1926T. Svedberg瑞士發明超速離心機並用於高分散膠體物質研究
1927H. Wieland德國膽酸的發現及其結構的測定
1928A. Windaus法國甾醇結構測定,維生素D3的合成
1929A.Harden
H. von Euler-Chelpin英國
法國糖的發酵以及酶在發酵中作用的研究
1930H. Fischer德國血紅素、葉綠素的結構研究,高鐵血紅素的合成
1931C.Bosch
F. Bergius德國
德國化學高壓法
1932J. Langmuir美國表面化學研究
1933無
1934H. C. Urey美國重水和重氫同位素的發現
1935F. Joliot-Curie
I. Joliot-Curie法國
法國新人工放射性元素的合成
1936P. Debye荷蘭提出了極性分子理論,確定了分子偶極矩的測定方法
1937W. N. Haworth
P. Karrer英國
瑞士糖類環狀結構的發現,維生素A、C和B12、胡蘿卜素及核黃素的合成
1938R. Kuhn德國維生素和類胡蘿卜素研究
1939A.F. J. Butenandt
L. Ruzicka德國
瑞士性激素研究
聚亞甲基多碳原子大環和多萜烯研究
1940無
1941無
1942無
1943G. Heresy匈牙利利用同位素示蹤研究化學反應
1944O. Hahn德國重核裂變的發現
1945A. J. Virtamen荷蘭發明了飼料貯存保鮮方法,對農業化學和營養化學做出貢獻
1946J. B. Sumner
J. H. Northrop
W. M. Stanley美國
美國
美國發現酶的類結晶法
分離得到純的酶和病毒蛋白
1947R. Robinson英國生物鹼等生物活性植物成分研究
1948A. W. K. Tiselius瑞典電泳和吸附分析的研究,血清蛋白的發現
1949W. F. Giaugue美國化學熱力學特別是超低溫下物質性質的研究
1950O. Diels
K. Alder德國
德國發現了雙烯合成反應,即Diels-Alder反應
1951E.M. Mcmillan
G. Seaborg美國
美國超鈾元素的發現
1952A.J. P. Martin
R. L. M. Synge英國
英國分配色譜分析法
1953H. Staudinger德國高分子化學方面的傑出貢獻
1954L. Pauling美國化學鍵本質和復雜物質結構的研究
1955V. . Vigneand美國生物化學中重要含硫化合物的研究,多肽激素的合成
1956C. N. Hinchelwood英國
蘇聯化學反應機理和鏈式反應的研究
1957A. Todd英國核苷酸及核苷酸輔酶的研究
1958F. Sanger英國蛋白質結構特別是胰島素結構的測定
1959J. Heyrovsky捷克極譜分析法的發明
1960W. F. Libby美國14C測定地質年代方法的發明
1961M. Calvin美國光合作用研究
1962M. F. Perutz
J. C. Kendrew英國
英國蛋白質結構研究
1963K. Ziegler
G. Natta德國
義大利Ziegler-Natta催化劑的發明,定向有規高聚物的合成
1964D. C. Hodgkin英國重要生物大分子的結構測定
1965R. B. Woodward美國天然有機化合物的合成
1966R. S. Mulliken美國分子軌道理論
1967M. Eigen
R. G. W. Norrish
G. Porter德國
英國
英國用馳豫法、閃光光解法研究快速化學反應
1968L. Onsager美國不可逆過程熱力學研究
1969D.H. R. Barton
O. Hassel英國
挪威發展了構象分析概念及其在化學中的應用
1970L. F. Leloir阿根廷從糖的生物合成中發現了糖核苷酸的作用
1971G. Herzberg加拿大分子光譜學和自由基電子結構
1972C .B. Anfinsen
S. Moore
W. H. Stein美國
美國
美國核糖核酸酶分子結構和催化反應活性中心的研究
1973G.Wilkinson
E. O. Fischer英國
德國二茂鐵結構研究,發展了金屬有機化學和配合物化學
1974P. J. Flory美國高分子物理化學理論和實驗研究
1975J. W. Cornforth
V. Prelog英國
瑞士酶催化反應的立體化學研究
有機分子和反應的立體化學研究
1976W. N. Lipscomb, Jr.美國有機硼化合物的結構研究,發展了分子結構學說和有機硼化學
1977I. Prigogine比利時研究非平衡的不可逆過程熱力學
1978P. Mitchell英國用化學滲透理論研究生物能的轉換
1979H.C. Brown
G. Wittig美國
德國發展了有機硼和有機磷試劑及其在有機合成中的應用
1980P. Berg
F. Sanger
W. Gilbert美國
英國
美國DNA分裂和重組研究,DNA測序,開創了現代基因工程學
1981Kenich Fukui
R. Hoffmann日本
美國提出前線軌道理論
提出分子軌道對稱守恆原理
1982A. Klug英國發明了「象重組」技術,利用X-射線衍射法測定了染色體的結構
1983H. Taube美國金屬配位化合物電子轉移反應機理研究
1984R. B. Merrifield美國固相多肽合成方法的發明
1985H. A. Hauptman
J. Karle美國
美國發明了X-射線衍射確定晶體結構的直接計算方法
1986李遠哲
D. R. Herschbach
J. Polanyi美國
美國
加拿大發展了交叉分子束技術、紅外線化學發光方法,對微觀反應動力學研究作出重要貢獻
1987C. J. Pedersen
D. J. Cram
J-M. Lehn美國
美國
法國開創主-客體化學、超分子化學、冠醚化學等新領域
1988J. Deisenhoger
H. Michel
R. Huber德國
德國
德國生物體中光能和電子轉移研究,光合成反應中心研究
1989T. Cech
S. Altman美國
美國Ribozyme的發現
1990E. J. Corey美國有機合成特別是發展了逆合成分析法
1991R. R. Ernst瑞士二維核磁共振
1992R. A. Marcus
美國電子轉移反應理論
1993M. Smith
K. B. Mullis加拿大
美國寡聚核苷酸定點誘變技術
多聚酶鏈式反應(PCR)技術
1994G. A. Olah美國碳正離子化學
1995M. Molina
S. Rowland
P. Crutzen墨西哥
美國
荷蘭研究大氣環境化學,在臭氧的形成和分解研究方面作出重要貢獻
1996R. F. Curl
R. E. Smalley
H. W. Kroto美國
美國
英國發現C60
1997J. Skou

P. Boyer
J. Walker丹麥

美國
英國發現了維持細胞中鈉離子和鉀離子濃度平衡的酶,並闡明其作用機理
發現了能量分子三磷酸腺苷的形成過程
1998W. Kohn
J. A. Pople美國發展了電子密度泛函理論
發展了量子化學計算方法
1999A. H. Zewail美國飛秒技術研究超快化學反應過程和過渡態

1)放射性和鈾裂變的重大發現
20世紀在能源利用方面一個重大突破是核能的釋放和可控利用。僅此領域就產生了6項諾貝爾獎。首先是居里夫婦從19世紀末到20世紀初先後發現了放射性比鈾強400倍的釙,以及放射性比鈾強200多萬倍的鐳,這項艱巨的化學研究打開了20世紀原子物理學的大門,居里夫婦為此而獲得了1903年諾貝爾物理學獎。1906年居里不幸遇車禍身亡,居里夫人繼續專心於鐳的研究與應用,測定了鐳的原子量,建立了鐳的放射性標准,同時制備了20克鐳存放於巴黎國際度量衡中心作為標准,並積極提倡把鐳用於醫療,使放射治療得到了廣泛應用,造福人類。為表彰居里夫人在發現釙和鐳、開拓放射化學新領域以及發展放射性元素的應用方面的貢獻,1911年被授予了諾貝爾化學獎。20世紀初,盧瑟福從事關於元素衰變和放射性物質的研究,提出了原子的有核結構模型和放射性元素的衰變理論,研究了人工核反應,因此而獲得了1908年的諾貝爾化學獎。居里夫人的女兒和女婿約里奧-居里夫婦用釙的射線轟擊硼、呂、鎂時發現產生了帶有放射性的原子核,這是第一次用人工方法創造出放射性元素,為此約里奧-居里夫婦榮獲了1935年的諾貝爾化學獎。在約里奧-居里夫婦的基礎上,費米用曼中子轟擊各種元素獲得了60種新的放射性元素,並發現中子轟擊原子核後,就被原子核捕獲得到一個新原子核,且不穩定,核中的一個中子將放出一次衰變,生成原子序數增加1的元素。這一原理和方法的發現,使人工放射性元素的研究迅速成為當時的熱點。物理學介入化學,用物理方法在元素周期表上增加新元素成為可能。費米的這一成就使他獲得了1938年的諾貝爾物理學獎。1939年哈恩發現了核裂變現象,震撼了當時的科學界,成為原子能利用的基礎,為此,哈恩獲得了1944年諾貝爾化學獎。
1939年費里施在裂變現象中觀察到伴隨著碎片有巨大的能量,同時約里奧-居里夫婦和費米都測定了鈾裂變時還放出中子,這使鏈式反應成為可能。至此釋放原子能的前期基礎研究已經完成。從放射性的發現開始,然後發現了人工放射性,再後又發現了鈾裂變伴隨能量和中子的釋放,以至核裂變的可控鏈式反應。於是,1942年費米領導下成功的建造了第一座原子反應堆,1945年美國在日本投下了原子彈。核裂變和原子能的利用是20世紀初至中葉化學和物理界具有里程碑意義的重大突破。
(2)化學鍵和現代量子化學理論
在分子結構和化學鍵理論方面,鮑林(L.Pauling, 1901-1994)的貢獻最大。他長期從事X-射線晶體結構研究,尋求分子內部的結構信息,把量子力學應用於分子結構,把原子價理論擴展到金屬和金屬間化合物,提出了電負性概念和計算方法,創立了價鍵學說和雜化軌道理論。1954年由於他在化學鍵本質研究和用化學鍵理論闡明物質結構方面的重大貢獻而榮獲了諾貝爾化學獎。此後,莫利肯運用量子力學方法,創立了原子軌道線性組合分子軌道的理論,闡明了分子的共價鍵本質和電子結構,1966年榮獲諾貝爾化學獎。另外,1952年福井謙一提出了前線軌道理論,用於研究分子動態化學反應。1965年R.B.Woodward,和R.Hoffman提出了分子軌道對稱守恆原理,用於解釋和預測一系列反應的難易程度和產物的立體構型。這些理論被認為是認識化學反應發展史上的一個里程碑,為此,福井謙一和Hoffman共獲1981年諾貝爾化學獎。1998年科恩因發展了電子密度泛函理論,以及波普爾因發展了量子化學計算方法而共獲了諾貝爾化學獎。
化學鍵和量子化學理論的發展足足花了半個世紀的時間,讓化學家由淺入深,認識分子的本質及其相互作用的基本原理,從而讓人們進入分子的理性設計的高層次領域,創造新的功能分子,如葯物設計、新材料設計等,這也是20世紀化學的一個重大突破。
(3)合成化學的發展
創造新物質是化學家的首要任務。100年來合成化學發展迅速,許多新技術被用於無機和有機化合物的合成,例如,超低溫合成、高溫合成、高壓合成、電解合成、光合成、聲合成、微波合成、等離子體合成、固相合成、仿生合成等等;發現和創造的新反應、新合成方法數不勝數。現在,幾乎所有的已知天然化合物以及化學家感興趣的具有特定功能的非天然化合物都能夠通過化學合成的方法來獲得。在人類已擁有的1900多萬種化合物中,絕大多數是化學家合成的,幾乎又創造出了一個新的自然界。合成化學為滿足人類對物質的需求作出了極為重要的貢獻。縱觀20世紀,合成化學領域共獲得10項諾貝爾化學獎。
1912年格林亞德因發明格氏試劑,開創了有機金屬在各種官能團反應中的新領域而獲得諾貝爾化學獎。1928年狄爾斯和阿爾德因發現雙烯合成反應而獲得1950年諾貝爾化學獎。1953年齊格勒和納塔發現了有機金屬催化烯烴定向聚合,實現了乙烯的常壓聚合而榮獲1963年諾貝爾化學獎。人工合成生物分子一直是有機合成化學的研究重點。從最早的甾體(A.Windaus,1928年諾貝爾化學獎)、抗壞血酸(W.N.Haworth, 1937年諾貝爾化學獎)、生物鹼(R.Robinson,1947年諾貝爾化學獎)到多肽(V..Vigneand,1955年諾貝爾化學獎)逐漸深入。到1965年有機合成大師Woodward由於其有機合成的獨創思維和高超技藝,先後合成了奎寧、膽固醇、可的松、葉綠素和利血平等一系列復雜有機化合物而榮獲諾貝爾化學獎。獲獎後他又提出了分子軌道對稱守恆原理,並合成了維生素B12等。

維生素B12

此外,Wilkinson和Fischer合成了過渡金屬二茂夾心式化合物,確定了這種特殊結構,對金屬有機化學和配位化學的發展起了重大推動作用,榮獲1973年諾貝爾化學獎。1979年Brown和Wittig因分別發展了有機硼和Wittig反應而共獲諾貝爾化學獎。1984年Merrifield因發明了固相多肽合成法對有機合成方法學和生命化學起了巨大推動作用而獲得諾貝爾化學獎。1990年Corey在大量天然產物的全合成工作中總結並提出了「逆合成分析法」,極大的促進了有機合成化學的發展,因此而獲得諾貝爾化學獎。
現代合成化學是經歷了近百年的努力研究、探索和積累才發展到今天可以合成像海葵毒素這樣復雜的分子(分子式為C129H223N3O54, 分子量為2689道爾頓,有64個不對稱碳和7個骨架內雙鍵, 異構體數目多達271個)。

海葵毒素

(4)高分子科學和材料
20世紀人類文明的標志之一是合成材料的出現。合成橡膠、合成塑料和合成纖維這三大合成高分子材料化學中具有突破性的成就,也是化學工業的驕傲。在此領域曾有3項諾貝爾化學獎。1920年H.Staudinger提出了高分子這個概念,創立了高分子鏈型學說,以後又建立了高分子粘度與分子量之間的定量關系,為此而獲得了1953年的諾貝爾化學獎。1953年Ziegler成功地在常溫下用(C2H5)3AlTiCl4作催化劑將乙烯聚合成聚乙烯,從而發現了配位聚合反應。1955年Natta將Ziegler催化劑改進為-TiCl3和烷基鋁體系,實現了丙烯的定向聚合,得到了高產率、高結晶度的全同構型的聚丙烯,使合成方法-聚合物結構-性能三者聯系起來,成為高分子化學發展史中一項里程碑。為此,Ziegler和Natta共獲了1963年諾貝爾化學獎。1974年Flory因在高分子性質方面的成就也獲得了諾貝爾化學獎。
(5)化學動力學與分子反應動態學
研究化學反應是如何進行的,揭示化學反應的歷程和研究物質的結構與其反應能力之間的關系,是控制化學反應過程的需要。在這一領域相繼獲得過3次諾貝爾化學獎。1956年Semenov和Hinchelwood在化學反應機理、反應速度和鏈式反應方面的開創性研究獲得了諾貝爾化學獎。另外,Eigen提出了研究發生在千分之一秒內的快速化學反應的方法和技術,Porter和Norrish提出和發展了閃光光解法技術用於研究發生在十億分之一秒內的快速化學反應,對快速反應動力學研究作出了重大貢獻,他們三人共獲了1967年諾貝爾化學獎。
分子反應動態學,亦稱態-態化學,從微觀層次出發,深入到原子、分子的結構和內部運動、分子間相互作用和碰撞過程來研究化學反應的速率和機理。李遠哲和Herschbach首先發明了獲得各種態信息的交叉分子束技術,並利用該技術F+H2的反應動力學,對化學反應的基本原理作出了重要貢獻,被稱為分子反應動力學發展中的里程碑,為此李遠哲、Herschbach和Polany共獲了1986年諾貝爾化學獎。1999年Zewail因利用飛秒光譜技術研究過渡態的成就獲諾貝爾化學獎。
(6)對現代生命科學和生物技術的重大貢獻
研究生命現象和生命過程、揭示生命的起源和本質是當代自然科學的重大研究課題。20世紀生命化學的崛起給古老的生物學注入了新的活力,人們在分子水平上向生命的奧秘打開了一個又一個通道。蛋白質、核酸、糖等生物大分子和激素、神經遞質、細胞因子等生物小分子是構成生命的基本物質。從20世紀初開始生物小分子(如糖、血紅素、葉綠素、維生素等)的化學結構與合成研究就多次獲得諾貝爾化學獎,這是化學向生命科學進軍的第一步。1955年Vigneand因首次合成多肽激素催產素和加壓素而榮獲了諾貝爾化學獎。1958年Sanger因對蛋白質特別是牛胰島素分子結構測定的貢獻而獲得諾貝爾化學獎。1953年J.D.Watson和H.C.Crick提出了DNA分子雙螺旋結構模型,這項重大成果對於生命科學具有劃時代的貢獻,它為分子生物學和生物工程的發展奠定了基礎,為整個生命科學帶來了一場深刻的革命。Watson和Crick因此而榮獲了1962年諾貝爾醫學獎。1960年J.C.Kendrew和M.F.Perutz利用X-射線衍射成功地測定了鯨肌紅蛋白和馬血紅蛋白的空間結構,揭示了蛋白質分子的肽鏈螺旋區和非螺旋區之間還存在三維空間的不同排布方式,闡明了二硫鍵在形成這種三維排布方式中所起的作用,為此,他們二人共獲了1962年諾貝爾化學獎。1965年我國化學家人工合成結晶牛胰島素獲得成功,標志著人類在揭示生命奧秘的歷程中邁進了一大步。此外,1980年P.Berg、F.Sanger和W.Gilbert因在DNA分裂和重組、DNA測序以及現代基因工程學方面的傑出貢獻而共獲諾貝爾化學獎。1982年A.Klug因發明「象重組「技術和揭示病毒和細胞內遺傳物質的結構而獲得諾貝爾化學獎。1984年R.B.Merrifield因發明多肽固相合成技術而榮獲諾貝爾化學獎。1989年T.Cech和S.Altman因發現核酶(Ribozyme)而獲得諾貝爾化學獎。1993年M.Smith因發明寡核苷酸定點誘變法以及K.B.Mullis因發明多聚酶鏈式反應技術對基因工程的貢獻而共獲諾貝爾化學獎。1997年J.Skou因發現了維持細胞中Na離子和K離子濃度平衡的酶及有關機理、P.Boyer和J.Walker因揭示能量分子ATP的形成過程而共獲諾貝爾化學獎。
20世紀化學與生命科學相結合產生了一系列在分子層次上研究生命問題的新學科,如生物化學、分子生物學、化學生物學、生物有機化學、生物無機化學、生物分析化學等。在研究生命現象的領域里,化學不僅提供了技術和方法,而且還提供了理論。
(7)對人類健康的貢獻
利用葯物治療疾病是人類文明的重要標志之一。20世紀初,由於對分子結構和葯理作用的深入研究,葯物化學迅速發展,並成為化學學科一個重要領域。1909年德國化學家艾里希合成出了治療梅毒的特效葯物胂凡納明。20世紀30年代以來化學家從染料出發,創造出了一系列磺胺葯,使許多細菌性傳染病特別是肺炎、流行性腦炎、細菌性痢疾等長期危害人類健康和生命的疾病得到控制。青黴素、鏈黴素、金黴素、氯黴素、頭孢菌素等類型抗生素的發明,為人類的健康做出了巨大貢獻。具不完全統計,20世紀化學家通過合成、半合成或從動植物、微生物中提取而得到的臨床有效的化學葯物超過2萬種,常用的就有1000餘種,而且這個數目還在快速增加。
(8)對國民經濟和人類日常生活的貢獻
化學在改善人類生活方面是最有成效、最實用的學科之一。利用化學反應和過程來製造產品的化學過程工業(包括化學工業、精細化工、石油化工、制葯工業、日用化工、橡膠工業、造紙工業、玻璃和建材工業、鋼鐵工業、紡織工業、皮革工業、飲食工業等)在發達國家中佔有最大的份額。這個數字在美國超過30%,而且還不包括諸如電子、汽車、農業等要用到化工產品的相關工業的產值。發達國家從事研究與開發的科技人員中,化學、化工專家佔一半左右。世界專利發明中有20%與化學有關。
人類之衣、食、住、行、用無不與化學所掌管之成百化學元素及其所組成之萬千化合物和無數的制劑、材料有關。房子是用水泥、玻璃、油漆等化學產品建造的,肥皂和牙膏是日用化學品,衣服是合成纖維製成並由合成染料上色的。飲用水必須經過化學檢驗以保證質量,食品則是由用化肥和農葯生產的糧食製成的。維生素和葯物也是由化學家合成的。交通工具更離不開化學。車輛的金屬部件和油漆顯然是化學品,車廂內的裝潢通常是特種塑料或經化學制劑處理過的皮革製品,汽車的輪胎是由合成橡膠製成的,燃油和潤滑油是含化學添加劑的石油化學產品,蓄電池是化學電源,尾氣排放系統中用來降低污染的催化轉化器裝有用鉑、銠和其他一些物質組成的催化劑,它可將汽車尾氣中的氧化氮、一氧化碳和未燃盡的碳氫化合物轉化成低毒害的物質。飛機則需要用質強量輕的鋁合金來製造,還需要特種塑料和特種燃油。書刊、報紙是用化學家所發明的油墨和經化學方法生產出的紙張印製而成的。攝影膠片是塗有感光化學品的塑料片,它們能被光所敏化,所以在暴光時和在用顯影葯劑沖洗時,它們就會發生特定的化學反應。彩電和電腦顯示器的顯象管是由玻璃和熒光材料製成的,這些材料在電子束轟擊時可發出不同顏色的光。VCD光碟是由特殊的信息存儲材料製成的。甚至參加體育活動時穿的跑步鞋、溜冰鞋、運動服、乒乓球、羽毛球排等也都離不開現代合成材料和塗料

閱讀全文

與德國化學怎麼樣相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:976
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1653
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059