Ⅰ 有機化學的發展史
有機化學發展史
「有機化學」這一名詞於1806年首次由貝采利烏斯提出。當時是作為「無機化學」的對立物而命名的。19世紀初,許多化學家相信,在生物體內由於存在所謂「生命力」,才能產生有機化合物,而在實驗室里是不能由無機化合物合成的。
1824年,德國化學家維勒從氰經水解製得草酸;1828年他無意中用加熱的方法又使氰酸銨轉化為尿素。氰和氰酸銨都是無機化合物,而草酸和尿素都是有機化合物。維勒的實驗結果給予「生命力」學說第一次沖擊。此後,乙酸等有機化合物相繼由碳、氫等元素合成,「生命力」學說才逐漸被人們拋棄。
由於合成方法的改進和發展,越來越多的有機化合物不斷地在實驗室中合成出來,其中,絕大部分是在與生物體內迥然不同的條件下台成出來的。「生命力」學說漸漸被拋棄了, 「有機化學」這一名詞卻沿用至今。
從19世紀初到1858年提出價鍵概念之前是有機化學的萌芽時期。在這個時期,已經分離出許多有機化合物,制備了一些衍生物,並對它們作了定性描述。
法國化學家拉瓦錫發現,有機化合物燃燒後,產生二氧化碳和水。他的研究工作為有機化合物元素定量分析奠定了基礎。1830年,德國化學家李比希發展了碳、氫分析法,1833年法國化學家杜馬建立了氮的分析法。這些有機定量分析法的建立使化學家能夠求得一個化合物的實驗式。
當時在解決有機化合物分子中各原子是如何排列和結合的問題上,遇到了很大的困難。最初,有機化學用二元說來解決有機化合物的結構問題。二元說認為一個化合物的分子可分為帶正電荷的部分和帶負電荷的部分,二者靠靜電力結合在一起。早期的化學家根據某些化學反應認為,有機化合物分子由在反應中保持不變的基團和在反應中起變化的基團按異性電荷的靜電力結合。但這個學說本身有很大的矛盾。
類型說由法國化學家熱拉爾和洛朗建立。此說否認有機化合物是由帶正電荷和帶負電荷的基團組成,而認為有機化合物是由一些可以發生取代的母體化合物衍生的,因而可以按這些母體化合物來分類。類型說把眾多有機化合物不同類型分類,根據它們的類型不僅可以解釋化合物的一些性質,而且能夠預言一些新化合物。但類型說未能回答有機化合物的結構問題。
有機化合物按不同類型分類,根據它們的類型不僅可以解釋化合物的一些性質,而且能夠預言一些新化合物。但類型說未能回答有機化合物的結構問題。
從1858年價鍵學說的建立,到1916年價鍵的電子理論的引入,是經典有機化學時期。
1858年,德國化學家凱庫勒和英國化學家庫珀等提出價鍵的概念,並第一次用短劃「-」表示「鍵」。他們認為有機化合物分子是由其組成的原子通過鍵結合而成的。由於在所有已知的化合物中,一個氫原子只能與一個別的元素的原子結合,氫就選作價的單位。一種元素的價數就是能夠與這種元素的一個原子結合的氫原子的個數。凱庫勒還提出,在一個分子中碳原子之間可以互相結合這一重要的概念。
1848年巴斯德分離到兩種酒石酸結晶,一種半面晶向左,一種半面晶向右。前者能使平面偏振光向左旋轉,後者則使之向右旋轉,角度相同。在對乳酸的研究中也遇到類似現象。為此,1874年法國化學家勒貝爾和荷蘭化學家范托夫分別提出一個新的概念,圓滿地解釋了這種異構現象。
他們認為:分子是個三維實體,碳的四個價鍵在空間是對稱的,分別指向一個正四面體的四個頂點,碳原子則位於正四面體的中心。當碳原子與四個不同的原子或基團連接時,就產生一對異構體,它們互為實物和鏡像,或左手和右手的手性關系,這一對化合物互為旋光異構體。勒貝爾和范托夫的學說,是有機化學中立體化學的基礎。
1900年第一個自由基,三苯甲基自由基被發現,這是個長壽命的自由基。不穩定自由基的存在也於1929年得到了證實。
在這個時期,有機化合物在結構測定以及反應和分類方面都取得很大進展。但價鍵只是化學家從實踐經驗得出的一種概念,價鍵的本質尚未解決。
現代有機化學時期 在物理學家發現電子,並闡明原子結構的基礎上,美國物理化學家路易斯等人於1916年提出價鍵的電子理論。
他們認為:各原子外層電子的相互作用是使各原子結合在一起的原因。相互作用的外層電子如從—個原了轉移到另一個原子,則形成離子鍵;兩個原子如果共用外層電子,則形成共價鍵。通過電子的轉移或共用,使相互作用的原子的外層電子都獲得惰性氣體的電子構型。這樣,價鍵的圖象表示法中用來表示價鍵的短劃「-」,實際上是兩個原子共用的一對電子。
1927年以後,海特勒和倫敦等用量子力學,處理分子結構問題,建立了價鍵理論,為化學鍵提出了一個數學模型。後來馬利肯用分子軌道理論處理分子結構,其結果與價鍵的電子理論所得的大體一致,由於計算簡便,解決了許多當時不能回答的問題。有機化學的研究內容
有機化合物和無機化合物之間沒有絕對的分界。有機化學之所以成為化學中的一個獨立學科,是因為有機化合物確有其內在的聯系和特性。
位於周期表當中的碳元素,一般是通過與別的元素的原子共用外層電子而達到穩定的電子構型的。這種共價鍵的結合方式決定了有機化合物的特性。大多數有機化合物由碳、氫、氮、氧幾種元素構成,少數還含有鹵素和硫、磷元素。因而大多數有機化合物具有熔點較低、可以燃燒、易溶於有機溶劑等性質,這與無機化合物的性質有很大不同。
在含多個碳原子的有機化合物分子中,碳原子互相結合形成分子的骨架,別的元素的原子就連接在該骨架上。在元素周期表中,沒有一種別的元素能像碳那樣以多種方式彼此牢固地結合。由碳原子形成的分子骨架有多種形式,有直鏈、支鏈、環狀等。
在有機化學發展的初期,有機化學工業的主要原料是動、植物體,有機化學主要研究從動、植物體中分離有機化合物。
19世紀中到20世紀初,有機化學工業逐漸變為以煤焦油為主要原料。合成染料的發現,使染料、制葯工業蓬勃發展,推動了對芳香族化合物和雜環化合物的研究。30年代以後,以乙炔為原料的有機合成興起。40年代前後,有機化學工業的原料又逐漸轉變為以石油和天然氣為主,發展了合成橡膠、合成塑料和合成纖維工業。由於石油資源將日趨枯竭,以煤為原料的有機化學工業必將重新發展。當然,天然的動、植物和微生物體仍是重要的研究對象。
天然有機化學主要研究天然有機化合物的組成、合成、結構和性能。20世紀初至30年代,先後確定了單糖、氨基酸、核苷酸牛膽酸、膽固醇和某些萜類的結構,肽和蛋白質的組成;30~40年代,確定了一些維生素、甾族激素、多聚糖的結構,完成了一些甾族激素和維生素的結構和合成的研究;40~50年代前後,發現青黴素等一些抗生素,完成了結構測定和合成;50年代完成了某些甾族化合物和嗎啡等生物鹼的全合成,催產素等生物活性小肽的合成,確定了胰島素的化學結構,發現了蛋白質的螺旋結構,DNA的雙螺旋結構;60年代完成了胰島素的全合成和低聚核苷酸的合成;70年代至80年代初,進行了前列腺素、維生素B12、昆蟲信息素激素的全合成,確定了核酸和美登木素的結構並完成了它們的全合
成等等。
有機合成方面主要研究從較簡單的化合物或元素經化學反應合成有機化合物。19世紀30年代合成了尿素;40年代合成了乙酸。隨後陸續合成了葡萄糖酸、檸檬酸、琥珀酸、蘋果酸等一系列有機酸;19世紀後半葉合成了多種染料;20世紀40年代合成了滴滴涕和有機磷殺蟲劑、有機硫殺菌劑、除草劑等農葯;20世紀初,合成了606葯劑,30~40年代,合成了一千多種磺胺類化合物,其中有些可用作葯物。
物理有機化學是定量地研究有機化合物結構、反應性和反應機理的學科。它是在價鍵的電子學說的基礎上,引用了現代物理學、物理化學的新進展和量子力學理論而發展起來的。20世紀20~30年代,通過反應機理的研究,建立了有機化學的新體系;50年代的構象分析和哈米特方程開始半定量估算反應性與結構的關系;60年代出現了分子軌道對稱守恆原理和前線軌道理論。
有機分析即有機化合物的定性和定量分析。19世紀30年代建立了碳、氫定量分析法;90年代建立了氮的定量分析法;有機化合物中各種元素的常量分析法在19世紀末基本上已經齊全;20世紀20年代建立了有機微量定量分析法;70年代出現了自動化分析儀器。
由於科學和技術的發展,有機化學與各個學科互相滲透,形成了許多分支邊緣學科。比如生物有機化學、物理有機化學、量子有機化學、海洋有機化學等。有機化學的研究方法
有機化學研究手段的發展經歷了從手工操作到自動化、計算機化,從常量到超微量的過程。
20世紀40年代前,用傳統的蒸餾、結晶、升華等方法來純化產品,用化學降解和衍生物制備的方法測定結構。後來,各種色譜法、電泳技術的應用,特別是高壓液相色譜的應用改變了分離技術的面貌。各種光譜、能譜技術的使用,使有機化學家能夠研究分子內部的運動,使結構測定手段發生了革命性的變化。
電子計算機的引入,使有機化合物的分離、分析方法向自動化、超微量化方向又前進了一大步。帶傅里葉變換技術的核磁共振譜和紅外光譜又為反應動力學、反應機理的研究提供了新的手段。這些儀器和x射線結構分析、電子衍射光譜分析,已能測定微克級樣品的化學結構。用電子計算機設計合成路線的研究也已取得某些進展。
未來有機化學的發展首先是研究能源和資源的開發利用問題。迄今我們使用的大部分能源和資源,如煤、天然氣、石油、動植物和微生物,都是太陽能的化學貯存形式。今後一些學科的重要課題是更直接、更有效地利用太陽能。
對光合作用做更深入的研究和有效的利用,是植物生理學、生物化學和有機化學的共同課題。有機化學可以用光化學反應生成高能有機化合物,加以貯存;必要時則利用其逆反應,釋放出能量。另一個開發資源的目標是在有機金屬化合物的作用下固定二氧化碳,以產生無窮盡的有。機化合物。這幾方面的研究均已取得一些初步結果。
其次是研究和開發新型有機催化劑,使它們能夠模擬酶的高速高效和溫和的反應方式。這方面的研究已經開始,今後會有更大的發展。
20世紀60年代末,開始了有機合成的計算機輔助設計研究。今後有機合成路線的設計、有機化合物結構的測定等必將更趨系統化、邏輯化。
參考資料:http://www.chemoffice.cn/info/200610/369.html
Ⅱ 有機化學
有機化學 又稱為碳化合物的化學,是研究有機化合物的結構、性質、制備的學科,是化學中極重要的一個分支。含碳化合物被稱為有機化合物是因為以往的化學家們認為含碳物質一定要由生物(有機體)才能製造;然而在1828年的時候,德國化學家弗里德里希·維勒,在實驗室中成功合成尿素(一種生物分子),自此以後有機化學便脫離傳統所定義的范圍,擴大為含碳物質的化學。
「有機化學」這一名詞於1806年首次由貝采里烏斯提出。當時是作為「無機化學」的對立物而命名的。由於科學條件限制,有機化學研究的對象只能是從天然動植物有機體中提取的有機物。因而許多化學家都認為,在生物體內由於存在所謂「生命力」,才能產生有機化合物,而在實驗室里是不能由無機化合物合成的。
1824年,德國化學家維勒從氰經水解製得草酸;1828年他無意中用加熱的方法又使氰酸銨轉化為尿素。氰和氰酸銨都是無機化合物,而草酸和尿素都是有機化合物。維勒的實驗結果給予「生命力」學說第一次沖擊。此後,乙酸等有機化合物相繼由碳、氫等元素合成,「生命力」學說才逐漸被人們拋棄。
由於合成方法的改進和發展,越來越多的有機化合物不斷地在實驗室中合成出來,其中,絕大部分是在與生物體內迥然不同的條件下合成出來的。「生命力」學說漸漸被拋棄了,「有機化學」這一名詞卻沿用至今。
從19世紀初到1858年提出價鍵概念之前是有機化學的萌芽時期。在這個時期,已經分離出許多有機化合物,制備了一些衍生物,並對它們作了定性描述,認識了一些有機化合物的性質。
法國化學家拉瓦錫發現,有機化合物燃燒後,產生二氧化碳和水。他的研究工作為有機化合物元素定量分析奠定了基礎。1830年,德國化學家李比希發展了碳、氫分析法,1833年法國化學家杜馬建立了氮的分析法。這些有機定量分析法的建立使化學家能夠求得一個化合物的實驗式。
當時在解決有機化合物分子中各原子是如何排列和結合的問題上,遇到了很大的困難。最初,有機化學用二元說來解決有機化合物的結構問題。二元說認為一個化合物的分子可分為帶正電荷的部分和帶負電荷的部分,二者靠靜電力結合在一起。早期的化學家根據某些化學反應認為,有機化合物分子由在反應中保持不變的基團和在反應中起變化的基團按異性電荷的靜電力結合。但這個學說本身有很大的矛盾。
類型說由法國化學家熱拉爾和洛朗建立。此說否認有機化合物是由帶正電荷和帶負電荷的基團組成,而認為有機化合物是由一些可以發生取代的母體化合物衍生的,因而可以按這些母體化合物來分類。類型說把眾多有機化合物按不同類型分類,根據它們的類型不僅可以解釋化合物的一些性質,而且能夠預言一些新化合物。但類型說未能回答有機化合物的結構問題。這個問題成為困擾人們多年的謎團。
從1858年價鍵學說的建立,到1916年價鍵的電子理論的引入,才解開了這個不解的謎團
經典有機化學時期。
1858年,德國化學家凱庫勒和英國化學家庫珀等提出價鍵的概念,並第一次用短劃「—」表示「鍵」。他們認為有機化合物分子是由其組成的原子通過鍵結合而成的。由於在所有已知的化合物中,一個氫原子只能與一個別的元素的原子結合,氫就選作價的單位。一種元素的價數就是能夠與這種元素的一個原子結合的氫原子的個數。凱庫勒還提出,在一個分子中碳原子之間可以互相結合這一重要的概念。
1848年巴斯德分離到兩種酒石酸結晶,一種半面晶向左,一種半面晶向右。前者能使平面偏振光向左旋轉,後者則使之向右旋轉,角度相同。在對乳酸的研究中也遇到類似現象。為此,1874年法國化學家勒貝爾和荷蘭化學家范托夫分別提出一個新的概念:同分異構體,圓滿地解釋了這種異構現象。
他們認為:分子是個三維實體,碳的四個價鍵在空間是對稱的,分別指向一個正四面體的四個頂點,碳原子則位於正四面體的中心。當碳原子與四個不同的原子或基團連接時,就產生一對異構體,它們互為實物和鏡像,或左手和右手的手性關系,這一對化合物互為旋光異構體。勒貝爾和范托夫的學說,是有機化學中立體化學的基礎。
1900年第一個自由基,三苯甲基自由基被發現,這是個長壽命的自由基。而不穩定自由基的存在也於1929年得到了證實。
在這個時期,有機化合物在結構測定以及反應和分類方面都取得很大進展。但價鍵只是化學家從實踐經驗得出的一種概念,價鍵的本質尚未解決。
編輯本段現代有機化學時期
在物理學家發現電子,並闡明原子結構的基礎上,美國物理化學家路易斯等人於1916年提出價鍵的電子理論。
他們認為:各原子外層電子的相互作用是使各原子結合在一起的原因。相互作用的外層電子如從—個原子轉移到另一個原子,則形成離子鍵;兩個原子如果共用外層電子,則形成共價鍵。通過電子的轉移或共用,使相互作用的原子的外層電子都獲得惰性氣體的電子構型。這樣,價鍵的圖象表示法中用來表示價鍵的短劃「—」,實際上是兩個原子的一對共用電子對。
1927年以後,海特勒和倫敦等用量子力學,處理分子結構問題,建立了價鍵理論,為化學鍵提出了一個數學模型。後來馬利肯用分子軌道理論來處理分子結構,其結果與價鍵的電子理論所得的大體一致,由於計算簡便,解決了許多當時不能回答的問題。
編輯本段有機化學的研究內容
有機化合物和無機化合物之間沒有絕對的分界。有機化學之所以成為化學中的一個獨立學科,是因為有機化合物確有其內在的聯系和特性。
位於周期表當中的碳元素,一般是通過與別的元素的原子共用外層電子而達到穩定的電子構型的(即形成共價鍵)。這種共價鍵的結合方式決定了有機化合物的特性。大多數有機化合物由碳、氫、氮、氧幾種元素構成,少數還含有鹵素和硫、磷、氮等元素。因而大多數有機化合物具有熔點較低、可以燃燒、易溶於有機溶劑等性質,這與無機化合物的性質有很大不同。
在含多個碳原子的有機化合物分子中,碳原子互相結合形成分子的骨架,別的元素的原子就連接在該骨架上。在元素周期表中,沒有一種別的元素能像碳那樣以多種方式彼此牢固地結合。由碳原子形成的分子骨架有多種形式,有直鏈、支鏈、環狀等。
在有機化學發展的初期,有機化學工業的主要原料是動、植物體,有機化學主要研究從動、植物體中分離有機化合物。
19世紀中到20世紀初,有機化學工業逐漸變為以煤焦油為主要原料。合成染料的發現,使染料、制葯工業蓬勃發展,推動了對芳香族化合物和雜環化合物的研究。30年代以後,以乙炔為原料的有機合成興起。40年代前後,有機化學工業的原料又逐漸轉變為以石油和天然氣為主,發展了合成橡膠、合成塑料和合成纖維工業。由於石油資源將日趨枯竭,以煤為原料的有機化學工業必將重新發展。當然,天然的動、植物和微生物體仍是重要的研究對象。
編輯本段天然有機化學主要研究
天然有機化學主要研究天然有機化合物的組成、合成、結構和性能。20世紀初至30年代,先後確定了單糖、氨基酸、核苷酸、牛膽酸、膽固醇和某些萜類的結構,肽和蛋白質的組成;30~40年代,確定了一些維生素、甾族激素、多聚糖的結構,完成了一些甾族激素和維生素的結構和合成的研究;40~50年代前後,發現青黴素等一些抗生素,完成了結構測定和合成;50年代完成了某些甾族化合物和嗎啡等生物鹼的全合成,催產素等生物活性小肽的合成,確定了胰島素的化學結構,發現了蛋白質的螺旋結構,DNA的雙螺旋結構;60年代完成了胰島素的全合成和低聚核苷酸的合成;70年代至80年代初,進行了前列腺素、維生素B12、昆蟲信息素激素的全合成,確定了核酸和美登木素的結構並完成了它們的全合成等等。
有機合成方面主要研究從較簡單的化合物或元素經化學反應合成有機化合物。19世紀30年代合成了尿素;40年代合成了乙酸。隨後陸續合成了葡萄糖酸、檸檬酸、琥珀酸、蘋果酸等一系列有機酸;19世紀後半葉合成了多種染料;20世紀40年代合成了DDT和有機磷殺蟲劑、有機硫殺菌劑、除草劑等農葯;20世紀初,合成了606葯劑,30~40年代,合成了一千多種磺胺類化合物,其中有些可用作葯物。
編輯本段物理有機化學
物理有機化學是定量地研究有機化合物結構、反應性和反應機理的學科。它是在價鍵的電子學說的基礎上,引用了現代物理學、物理化學的新進展和量子力學理論而發展起來的。20世紀20~30年代,通過反應機理的研究,建立了有機化學的新體系;50年代的構象分析和哈米特方程開始半定量估算反應性與結構的關系;60年代出現了分子軌道對稱守恆原理和前線軌道理論。
有機分析即有機化合物的定性和定量分析。19世紀30年代建立了碳、氫定量分析法;90年代建立了氮的定量分析法;有機化合物中各種元素的常量分析法在19世紀末基本上已經齊全;20世紀20年代建立了有機微量定量分析法;70年代出現了自動化分析儀器。
由於科學和技術的發展,有機化學與各個學科互相滲透,形成了許多分支邊緣學科。比如生物有機化學、物理有機化學、量子有機化學、海洋有機化學等。
有機化學的研究方法
有機化學研究手段的發展經歷了從手工操作到自動化、計算機化,從常量到超微量的過程。
20世紀40年代前,用傳統的蒸餾、結晶、升華等方法來純化產品,用化學降解和衍生物制備的方法測定結構。後來,各種色譜法、電泳技術的應用,特別是高壓液相色譜的應用改變了分離技術的面貌。各種光譜、能譜技術的使用,使有機化學家能夠研究分子內部的運動,使結構測定手段發生了革命性的變化。
電子計算機的引入,使有機化合物的分離、分析方法向自動化、超微量化方向又前進了一大步。帶傅里葉變換技術的核磁共振譜和紅外光譜又為反應動力學、反應機理的研究提供了新的手段。這些儀器和x射線結構分析、電子衍射光譜分析,已能測定微克級樣品的化學結構。用電子計算機設計合成路線的研究也已取得某些進展。
未來有機化學的發展首先是研究能源和資源的開發利用問題。迄今我們使用的大部分能源和資源,如煤、天然氣、石油、動植物和微生物,都是太陽能的化學貯存形式。今後一些學科的重要課題是更直接、更有效地利用太陽能。
對光合作用做更深入的研究和有效的利用,是植物生理學、生物化學和有機化學的共同課題。有機化學可以用光化學反應生成高能有機化合物,加以貯存;必要時則利用其逆反應,釋放出能量。另一個開發資源的目標是在有機金屬化合物的作用下固定二氧化碳,以產生無窮盡的有。機化合物。這幾方面的研究均已取得一些初步結果。
其次是研究和開發新型有機催化劑,使它們能夠模擬酶的高速高效和溫和的反應方式。這方面的研究已經開始,今後會有更大的發展。
20世紀60年代末,開始了有機合成的計算機輔助設計研究。今後有機合成路線的設計、有機化合物結構的測定等必將更趨系統化、邏輯化。
編輯本段有機化學課程
有機化學主要是介紹化學物質的科學(高中化學學習當中也會涉及部分有機化學的課程)。目前有機化學物質的分類主要是按照其決定性作用,能代表化學物質的基團也就是官能團的不同來進行分類的 。可分為:烷烴,烯烴,炔烴,芳香烴(以上為烴類);鹵代烴,醇,酚,醚,醛,酮,羧酸,羧酸衍生物,胺類,硝基化合物,腈類,含硫有機化合物(如硫醇,硫醚,硫酚,磺酸,碸與亞碸等),含磷有機化合物等元素有機化合物,雜環化合物等(以上為烴衍生物)。
具體主要是介紹這些化學物質的系統命名,化學反應,反應機理,制備方法。其中化學反應基本上為基團的取代,能否進行一個反應,取決於熱力學和動力學兩個方面的因素。而制備方法主要是通過無機物,石油提取物,以及容易制備或成本低的物質製得難以得到的物質。反應機理也為基團之間的進攻和離去傾向之間的競爭。
Ⅲ 農葯按化學成分分哪幾類
用來防治植物病、蟲、蟎、鼠、雜草等有害生物和調節植物生長的化學葯劑均稱為農葯。未經加工的農葯稱為原葯。原葯一般不能直接使用,需要經過加入適當的填充劑和輔助劑才能使用。經過加工的農葯稱為農葯制劑或商品農葯。農葯種類很多,常用的有500種左右,一般按照農葯的成分、用途及作用方式將農葯分類。
(1)按照成分分類。有無機農葯、植物性農葯、微生物農葯和有機合成農葯。無機農葯大多數由礦物原料加工製成,這類農葯品種較少,目前應用的只有波爾多液、石硫合劑等。植物性農葯是用植物產品製成,如除蟲菊、煙草、魚藤等。微生物農葯是用微生物及其代謝產物製造而成,如蘇雲金桿菌、白僵菌等。有機合成農葯,即人工合成的有機化合物農葯,是當今農葯的主體。
(2)根據用途分類。可分為殺蟲劑、殺蟎劑、殺線蟲劑、殺菌劑、除草劑、殺鼠劑、植物生長調節劑及殺軟體動物劑等。
(3)根據作用方式分類。殺蟲劑又分為胃毒劑、觸殺劑、熏蒸劑、內吸劑、性引誘劑、拒食劑、不育劑。殺菌劑又分為保護劑、治療劑和內吸殺菌劑。除草劑,又可分為選擇性除草劑和滅生性除草劑。
Ⅳ 有機化學和無機化學是什麼
有機化學是研究有機化合物的來源、制備、結構、性質、應用以及有關理論的科學,又稱碳化合物的化學。
有機化學的發展簡史
「有機化學」這一名詞於1806年首次由貝采利烏斯提出。當時是作為「無機化學」的對立物而命名的。19世紀初,許多化學家相信,在生物體內由於存在所謂「生命力」,才能產生有機化合物,而在實驗室里是不能由無機化合物合成的。
1824年,德國化學家維勒從氰經水解製得草酸;1828年他無意中用加熱的方法又使氰酸銨轉化為尿素。氰和氰酸銨都是無機化合物,而草酸和尿素都是有機化合物。維勒的實驗結果給予「生命力」學說第一次沖擊。此後,乙酸等有機化合物相繼由碳、氫等元素合成,「生命力」學說才逐漸被人們拋棄。
由於合成方法的改進和發展,越來越多的有機化合物不斷地在實驗室中合成出來,其中,絕大部分是在與生物體內迥然不同的條件下台成出來的。「生命力」學說漸漸被拋棄了, 「有機化學」這一名詞卻沿用至今。
從19世紀初到1858年提出價鍵概念之前是有機化學的萌芽時期。在這個時期,已經分離出許多有機化合物,制備了一些衍生物,並對它們作了定性描述。
法國化學家拉瓦錫發現,有機化合物燃燒後,產生二氧化碳和水。他的研究工作為有機化合物元素定量分析奠定了基礎。1830年,德國化學家李比希發展了碳、氫分析法,1833年法國化學家杜馬建立了氮的分析法。這些有機定量分析法的建立使化學家能夠求得一個化合物的實驗式。
當時在解決有機化合物分子中各原子是如何排列和結合的問題上,遇到了很大的困難。最初,有機化學用二元說來解決有機化合物的結構問題。二元說認為一個化合物的分子可分為帶正電荷的部分和帶負電荷的部分,二者靠靜電力結合在一起。早期的化學家根據某些化學反應認為,有機化合物分子由在反應中保持不變的基團和在反應中起變化的基團按異性電荷的靜電力結合。但這個學說本身有很大的矛盾。
類型說由法國化學家熱拉爾和洛朗建立。此說否認有機化合物是由帶正電荷和帶負電荷的基團組成,而認為有機化合物是由一些可以發生取代的母體化合物衍生的,因而可以按這些母體化合物來分類。類型說把眾多有機化合物按不同類型分類,根據它們的類型不僅可以解釋化合物的一些性質,而且能夠預言一些新化合物。但類型說未能回答有機化合物的結構問題。
有機化合物按不同類型分類,根據它們的類型不僅可以解釋化合物的一些性質,而且能夠預言一些新化合物。但類型說未能回答有機化合物的結構問題。
從1858年價鍵學說的建立,到1916年價鍵的電子理論的引入,是經典有機化學時期。
1858年,德國化學家凱庫勒和英國化學家庫珀等提出價鍵的概念,並第一次用短劃「-」表示「鍵」。他們認為有機化合物分子是由其組成的原子通過鍵結合而成的。由於在所有已知的化合物中,一個氫原子只能與一個別的元素的原子結合,氫就選作價的單位。一種元素的價數就是能夠與這種元素的一個原子結合的氫原子的個數。凱庫勒還提出,在一個分子中碳原子之間可以互相結合這一重要的概念。
1848年巴斯德分離到兩種酒石酸結晶,一種半面晶向左,一種半面晶向右。前者能使平面偏振光向左旋轉,後者則使之向右旋轉,角度相同。在對乳酸的研究中也遇到類似現象。為此,1874年法國化學家勒貝爾和荷蘭化學家范托夫分別提出一個新的概念,圓滿地解釋了這種異構現象。
他們認為:分子是個三維實體,碳的四個價鍵在空間是對稱的,分別指向一個正四面體的四個頂點,碳原子則位於正四面體的中心。當碳原子與四個不同的原子或基團連接時,就產生一對異構體,它們互為實物和鏡像,或左手和右手的手性關系,這一對化合物互為旋光異構體。勒貝爾和范托夫的學說,是有機化學中立體化學的基礎。
1900年第一個自由基,三苯甲基自由基被發現,這是個長壽命的自由基。不穩定自由基的存在也於1929年得到了證實。
在這個時期,有機化合物在結構測定以及反應和分類方面都取得很大進展。但價鍵只是化學家從實踐經驗得出的一種概念,價鍵的本質尚未解決。
現代有機化學時期 在物理學家發現電子,並闡明原子結構的基礎上,美國物理化學家路易斯等人於1916年提出價鍵的電子理論。
他們認為:各原子外層電子的相互作用是使各原子結合在一起的原因。相互作用的外層電子如從—個原了轉移到另一個原子,則形成離子鍵;兩個原子如果共用外層電子,則形成共價鍵。通過電子的轉移或共用,使相互作用的原子的外層電子都獲得惰性氣體的電子構型。這樣,價鍵的圖象表示法中用來表示價鍵的短劃「-」,實際上是兩個原子共用的一對電子。
1927年以後,海特勒和倫敦等用量子力學,處理分子結構問題,建立了價鍵理論,為化學鍵提出了一個數學模型。後來馬利肯用分子軌道理論處理分子結構,其結果與價鍵的電子理論所得的大體一致,由於計算簡便,解決了許多當時不能回答的問題。
有機化學的研究內容
有機化合物和無機化合物之間沒有絕對的分界。有機化學之所以成為化學中的一個獨立學科,是因為有機化合物確有其內在的聯系和特性。
位於周期表當中的碳元素,一般是通過與別的元素的原子共用外層電子而達到穩定的電子構型的。這種共價鍵的結合方式決定了有機化合物的特性。大多數有機化合物由碳、氫、氮、氧幾種元素構成,少數還含有鹵素和硫、磷等元素。因而大多數有機化合物具有熔點較低、可以燃燒、易溶於有機溶劑等性質,這與無機化合物的性質有很大不同。
在含多個碳原子的有機化合物分子中,碳原子互相結合形成分子的骨架,別的元素的原子就連接在該骨架上。在元素周期表中,沒有一種別的元素能像碳那樣以多種方式彼此牢固地結合。由碳原子形成的分子骨架有多種形式,有直鏈、支鏈、環狀等。
在有機化學發展的初期,有機化學工業的主要原料是動、植物體,有機化學主要研究從動、植物體中分離有機化合物。
19世紀中到20世紀初,有機化學工業逐漸變為以煤焦油為主要原料。合成染料的發現,使染料、制葯工業蓬勃發展,推動了對芳香族化合物和雜環化合物的研究。30年代以後,以乙炔為原料的有機合成興起。40年代前後,有機化學工業的原料又逐漸轉變為以石油和天然氣為主,發展了合成橡膠、合成塑料和合成纖維工業。由於石油資源將日趨枯竭,以煤為原料的有機化學工業必將重新發展。當然,天然的動、植物和微生物體仍是重要的研究對象。
天然有機化學主要研究天然有機化合物的組成、合成、結構和性能。20世紀初至30年代,先後確定了單糖、氨基酸、核苷酸牛膽酸、膽固醇和某些萜類的結構,肽和蛋白質的組成;30~40年代,確定了一些維生素、甾族激素、多聚糖的結構,完成了一些甾族激素和維生素的結構和合成的研究;40~50年代前後,發現青黴素等一些抗生素,完成了結構測定和合成;50年代完成了某些甾族化合物和嗎啡等生物鹼的全合成,催產素等生物活性小肽的合成,確定了胰島素的化學結構,發現了蛋白質的螺旋結構,DNA的雙螺旋結構;60年代完成了胰島素的全合成和低聚核苷酸的合成;70年代至80年代初,進行了前列腺素、維生素B12、昆蟲信息素激素的全合成,確定了核酸和美登木素的結構並完成了它們的全合成等等。
有機合成方面主要研究從較簡單的化合物或元素經化學反應合成有機化合物。19世紀30年代合成了尿素;40年代合成了乙酸。隨後陸續合成了葡萄糖酸、檸檬酸、琥珀酸、蘋果酸等一系列有機酸;19世紀後半葉合成了多種染料;20世紀40年代合成了滴滴涕和有機磷殺蟲劑、有機硫殺菌劑、除草劑等農葯;20世紀初,合成了606葯劑,30~40年代,合成了一千多種磺胺類化合物,其中有些可用作葯物。
物理有機化學是定量地研究有機化合物結構、反應性和反應機理的學科。它是在價鍵的電子學說的基礎上,引用了現代物理學、物理化學的新進展和量子力學理論而發展起來的。20世紀20~30年代,通過反應機理的研究,建立了有機化學的新體系;50年代的構象分析和哈米特方程開始半定量估算反應性與結構的關系;60年代出現了分子軌道對稱守恆原理和前線軌道理論。
有機分析即有機化合物的定性和定量分析。19世紀30年代建立了碳、氫定量分析法;90年代建立了氮的定量分析法;有機化合物中各種元素的常量分析法在19世紀末基本上已經齊全;20世紀20年代建立了有機微量定量分析法;70年代出現了自動化分析儀器。
由於科學和技術的發展,有機化學與各個學科互相滲透,形成了許多分支邊緣學科。比如生物有機化學、物理有機化學、量子有機化學、海洋有機化學等。
有機化學的研究方法
有機化學研究手段的發展經歷了從手工操作到自動化、計算機化,從常量到超微量的過程。
20世紀40年代前,用傳統的蒸餾、結晶、升華等方法來純化產品,用化學降解和衍生物制備的方法測定結構。後來,各種色譜法、電泳技術的應用,特別是高壓液相色譜的應用改變了分離技術的面貌。各種光譜、能譜技術的使用,使有機化學家能夠研究分子內部的運動,使結構測定手段發生了革命性的變化。
電子計算機的引入,使有機化合物的分離、分析方法向自動化、超微量化方向又前進了一大步。帶傅里葉變換技術的核磁共振譜和紅外光譜又為反應動力學、反應機理的研究提供了新的手段。這些儀器和x射線結構分析、電子衍射光譜分析,已能測定微克級樣品的化學結構。用電子計算機設計合成路線的研究也已取得某些進展。
未來有機化學的發展首先是研究能源和資源的開發利用問題。迄今我們使用的大部分能源和資源,如煤、天然氣、石油、動植物和微生物,都是太陽能的化學貯存形式。今後一些學科的重要課題是更直接、更有效地利用太陽能。
對光合作用做更深入的研究和有效的利用,是植物生理學、生物化學和有機化學的共同課題。有機化學可以用光化學反應生成高能有機化合物,加以貯存;必要時則利用其逆反應,釋放出能量。另一個開發資源的目標是在有機金屬化合物的作用下固定二氧化碳,以產生無窮盡的有。機化合物。這幾方面的研究均已取得一些初步結果。
其次是研究和開發新型有機催化劑,使它們能夠模擬酶的高速高效和溫和的反應方式。這方面的研究已經開始,今後會有更大的發展。
20世紀60年代末,開始了有機合成的計算機輔助設計研究。今後有機合成路線的設計、有機化合物結構的測定等必將更趨系統化、邏輯化。
=========================================
無機化學是研究無機物質的組成、性質、結構和反應的科學,它是化學中最古老的分支學科。無機物質包括所有化學元素和它們的化合物,不過大部分的碳化合物除外。(除二氧化碳、一氧化碳、二硫化碳、碳酸鹽等簡單的碳化合物仍屬無機物質外,其餘均屬於有機物質。)
過去認為無機物質即無生命的物質,如岩石、土壤,礦物、水等;而有機物質則是由有生命的動物和植物產生,如蛋白質、油脂、澱粉、纖維素、尿素等。1828年德意志化學家維勒從無機物氰酸銨製得尿素,從而破除了有機物只能由生命力產生的迷信,明確了這兩類物質都是由化學力結合而成。現在這兩類物質是按上述組分不同而劃分的。
無機化學發展簡史
原始人類即能辨別自然界存在的無機物質的性質而加以利用。後來偶然發現自然物質能變化成性質不同的新物質,於是加以仿效,這就是古代化學工藝的開始。
如至少在公元前6000年,中國原始人即知燒粘土製陶器,並逐漸發展為彩陶、白陶,釉陶和瓷器。公元前5000年左右,人類發現天然銅性質堅韌,用作器具不易破損。後又觀察到銅礦石如孔雀石 (鹼式碳酸銅)與燃熾的木炭接觸而被分解為氧化銅,進而被還原為金屬銅,經過反復觀察和試驗,終於掌握以木炭還原銅礦石的煉銅技術。以後又陸續掌握煉錫、煉鋅、煉鎳等技術。中國在春秋戰國時代即掌握了從鐵礦冶鐵和由鐵煉鋼的技術,公元前2世紀中國發現鐵能與銅化合物溶液反應產生銅,這個反應成為後來生產銅的方法之一。
化合物方面,在公元前17世紀的殷商時代即知食鹽(氧化鈉)是調味品,苦鹽(氫化鎂)的味苦。公元前五世紀已有琉璃(聚硅酸鹽)器皿。公元七世紀,中國即有焰硝(硝酸鉀)、硫黃和木炭做成火葯的記載。明朝宋應星在1637年刊行的《天工開物》中詳細記述了中國古代手工業技術,其中有陶瓷器、銅、鋼鐵、食鹽、焰硝、石灰、紅黃礬、等幾十種無機物的生產過程。由此可見,在化學科學建立前,人類已掌握了大量無機化學的知識和技術。
古代的煉丹術是化學科學的先驅,煉丹術就是企圖將丹砂(硫化汞)之類葯劑變成黃金,並煉制出長生不老之丹的方術。中國金丹術始於公元前2、3世紀的秦漢時代。公元142年中國金丹家魏伯陽所著的《周易參同契》是世界上最古的論述金丹術的書,約在360年有葛洪著的《抱朴子》,這兩本書記載了60多種無機物和它們的許多變化。約在公元8世紀,歐洲金丹術興起,後來歐洲的金丹術逐漸演進為近代的化學科學,而中國的金丹術則未能進一步演進。
金丹家關於無機物變化的知識主要從實驗中得來。他們設計製造了加熱爐、反應室、蒸餾器、研磨器等實驗用具。金丹家所追求的目的雖屬荒誕,但所使用的操作方法和積累的感性知識,卻成為化學科學的前驅。
由於最初化學所研究的多為無機物,所以近代無機化學的建立就標志著近代化學的創始。建立近代化學貢獻最大的化學家有三人,即英國的玻意耳、法國的拉瓦錫和英國的道爾頓。
玻意耳在化學方面進行過很多實驗,如磷、氫的制備,金屬在酸中的溶解以及硫、氫等物的燃燒。他從實驗結果闡述了元素和化合物的區別,提出元素是一種不能分出其他物質的物質。這些新概念和新觀點,把化學這門科學的研究引上了正確的路線,對建立近代化學作出了卓越的貢獻。
拉瓦錫採用天平作為研究物質變化的重要工具,進行了硫、磷的燃燒,錫、汞等金屬在空氣中加熱的定量實驗,確立了物質的燃燒是氧化作用的正確概念,推翻了盛行百年之久的燃素說。拉瓦錫在大量定量實驗的基礎上,於1774年提出質量守恆定律,即在化學變化中,物質的質量不變。1789年,在他所著的《化學概要》中,提出第一個化學元素分類表和新的化學命名法,並運用正確的定量觀點,敘述當時的化學知識,從而奠定了近代化學的基礎。由於拉瓦錫的提倡,天平開始普遍應用於化合物組成和變化的研究。
1799年,法國化學家普魯斯特歸納化合物組成測定的結果,提出定比定律,即每個化合物各組分元素的重量皆有一定比例。結合質量守恆定律,1803年道爾頓提出原子學說,宣布一切元素都是由不能再分割、不能毀滅的稱為原子的微粒所組成。並從這個學說引伸出倍比定律,即如果兩種元素化合成幾種不同的化合物,則在這些化合物中,與一定重量的甲元素化合的乙元素的重量必互成簡單的整數比。這個推論得到定量實驗結果的充分印證。原子學說建立後,化學這門科學開始宣告成立。
19世紀30年代,已知的元素已達60多種,俄國化學家門捷列夫研究了這些元素的性質,在1869年提出元素周期律:元素的性質隨著元素原子量的增加呈周期性的變化。這個定律揭示了化學元素的自然系統分類。元素周期表就是根據周期律將化學元素按周期和族類排列的,周期律對於無機化學的研究、應用起了極為重要的作用。
目前已知的元素共109種,其中94種存在於自然界,15種是人造的。代表化學元素的符號大都是拉丁文名稱縮寫。中文名稱有些是中國自古以來就熟知的元素,如金、鋁、銅、鐵、錫、硫、砷、磷等;有些是由外文音譯的,如鈉、錳、鈾、氦等;也有按意新創的,如氫(輕的氣)、溴(臭的水)、鉑(白色的金,同時也是外文名字的譯音)等。
周期律對化學的發展起著重大的推動作用。根據周期律,門捷列夫曾預言當時尚未發現的元素的存在和性質。周期律還指導了對元素及其化合物性質的系統研究,成為現代物質結構理論發展的基礎。系統無機化學一般就是指按周期分類對元素及其化合物的性質、結構及其反應所進行的敘述和討論。
19世紀末的一系列發現,開創了現代無機化學;1895年倫琴發現 X射線;1896年貝克勒爾發現鈾的放射性;1897年湯姆遜發現電子;1898年,居里夫婦發現釙和鐳的放射性。20世紀初盧瑟福和玻爾提出原子是由原子核和電子所組成的結構模型,改變了道爾頓原子學說的原子不可再分的觀念。
1916年科塞爾提出電價鍵理論,路易斯提出共價鍵理論,圓滿地解釋了元素的原子價和化合物的結構等問題。1924年,德布羅意提出電子等物質微粒具有波粒二象性的理論;1926年,薛定諤建立微粒運動的波動方程;次年,海特勒和倫敦應用量子力學處理氫分子,證明在氫分子中的兩個氫核間,電子幾率密度有顯著的集中,從而提出了化學鍵的現代觀點。
此後,經過幾方面的工作,發展成為化學鍵的價鍵理論、分子軌道理論和配位場理論。這三個基本理論是現代無機化學的理論基礎。
無機化學的研究內容
無機化學在成立之初,其知識內容已有四類,即事實、概念、定律和學說。
用感官直接觀察事物所得的材料,稱為事實;對於事物的具體特徵加以分析、比較、綜合和概括得到概念,如元素、化合物、化合、化分、氧化、還原、原子等皆是無機化學最初明確的概念;組合相應的概念以概括相同的事實則成定律,例如,不同元素化合成各種各樣的化合物,總結它們的定量關系得出質量守恆、定比、倍比等定律;建立新概念以說明有關的定律,該新概念又經實驗證明為正確的,即成學說。例如,原子學說可以說明當時已成立的有關元素化合重量關系的各定律。
化學知識的這種派生關系表明它們之間的內在聯系。定律綜合事實,學說解釋並貫串定律,從而把整個化學內容組織成為一個有系統的科學知識。人們認為近代化學是在道爾頓創立原子學說之後建立起來的,因為該學說把當時的化學內容進行了科學系統化。
系統的化學知識是按照科學方法進行研究的。科學方法主要分為三步:
搜集事實 搜集的方法有觀察和實驗。實驗是控制條件下的觀察。化學研究特別重視實驗,因為自然界的化學變化現象都很復雜,直接觀察不易得到事物的本質。例如,鐵生銹是常見的化學變化,若不控制發生作用的條件,如水氣、氧、二氧化碳、空氣中的雜質和溫度等就不易了解所起的反應和所形成的產物。
無論觀察或實驗,所搜集的事實必須切實准確。化學實驗中的各種操作,如沉澱、過濾、灼燒、稱重、蒸餾、滴定、結晶、萃取等等,都是在控制條件下獲得正確可靠事實知識的實驗手段。正確知識的獲得,既要靠熟練的技術,也要靠精密的儀器,近代化學是由天平的應用開始的。通過對每一現象的測量,並用數字表示,才算對此現象有了確切知識。
建立定律 古代化學工藝和金丹術積累的化學知識雖然很多,但不能稱為科學。要知識成為科學,必須將搜集到的大量事實加以分析比較,去粗取精,由此及彼地將類似的事實歸納成為定律。例如普魯斯特注意化合物的成分,他分析了大量的、采自世界各地的、天然的和人工合成的多種化合物,經過八年的努力後發現每一種化合物的組成都是完全相同的,於是歸納這類事實,提出定比定律。
創立學說 化學定律雖比事實為少,但為數仍多,而且各自分立,互不相關。化學家要求理解各定律的意義及其相互關系。道爾頓由表及裡地提出物質由原子構成的概念,創立原子學說,解釋了關於元素化合和化合物變化的重量關系的各個定律,並使之連貫起來,從而將化學知識按其形成的層次組織成為一門系統的科學。
由於各學科的深入發展和學科間的相互滲透,形成許多跨學科的新的研究領域。無機化學與其他學科結合而形成的新興研究領域很多,例如生物無機化學就是無機化學與生物化學結合的邊緣學科。
現代物理實驗方法如:X射線、中子衍射、電子衍射、磁共振、光譜、質譜、色譜等方法的應用,使無機物的研究由宏觀深入到微觀,從而將元素及其化合物的性質和反應同結構聯系起來,形成現代無機化學。現代無機化學就是應用現代物理技術及物質微觀結構的觀點來研究和闡述化學元素及其所有無機化合物的組成、性能、結構和反應的科學。無機化學的發展趨向主要是新型化合物的合成和應用,以及新研究領域的開辟和建立。
Ⅳ 請問有機合成化學,有機分析化學,應用有機化學之間有什麼區別拜託了各位 謝謝
有機化學按照研究的側重點不同,分為有機合成化學,有機分析化學,立體化學,物理有機化學等,有機合成化學是研究人工方法合成,制備有機化合物的理論和方法的科學。有機分析化學是研究有機化合物的分離分析和結構測定。應用有機化學和前面兩個的分類標准不一樣,它對應的類別有基礎理論化學;應用有機化學下面的分支有:葯物化學,染料化學,農葯化學等。
Ⅵ 這個有機化合物是什麼
有機化合物即碳氫化合物(烴)及其衍生物,簡稱有機物。除水和一些無機鹽外,生物體的組成成分幾乎全是有機物,如澱粉、蔗糖、油脂、蛋白質、核酸以及各種色素。過去誤以為只有動植物(有機體)能產生有機物,故取名「有機」。現在不僅許多天然產物可以用人工方法合成,而且可以從動植物、煤、石油、天然氣等分離或改造加工製成多種工農業生產和人民生活的必需品,象塑料、合成纖維、農葯、人造橡膠等。與無機物相比,有機物的種類眾多,一般揮發性較大、熔點和沸點較低,反應較慢(較復雜)。溶於有機溶劑,且能燃燒。碳原子可用共價鍵彼此連接生成多種結構,組成數量巨大的不同種類的有機分子骨架。
按照基本結構,有機物可分成3類:
(1)開鏈化合物,又稱脂肪族化合物,因為它最初是在油脂中發現的。其結構特點是碳與碳間連接成不閉口的鏈。
(2)碳環化合物(含有完全由碳原子組成的環),又可分成脂環族化合物(在結構上可看成是開鏈化合物關環而成的)和芳香族化合物(含有苯環)兩個亞類。
(3)雜環化合物(含有由碳原子和其他元素組成的環)。在烴分子中,共價連接的碳原子是骨架,碳的其他鍵則與氫結合。烴骨架非常穩定,因為形成碳-碳單鍵和雙鍵的碳原子同等享用它們之間的電子對。烴的氫原子可以被不同的功能團(官能團)取代產生不同類的有機物。功能團決定分子的主要性質,所以有機物也常根據其功能團分類。有機生物分子的功能團比其烴骨架在化學上活潑得多,它們能改變鄰近原子的幾何形狀及其上的電子分布,從而改變整個有機分子的化學反應性。從有機分子中的功能團可以分析和推測其化學行為和反應。如酶(細胞的催化劑)可識別生物分子中的特殊功能團並催化其結構發生特徵性變化,大多數生物分子是多功能的,含有兩種或多種功能團。在這些分子中,每種類型的功能團有其自己的化學特徵和反應。如氨基酸具有至少兩種功能團——氨基和羧基。丙氨酸的化學性質就基本決定於其氨基和羧基。又如葡萄糖也是多功能的生物分子,其化學性質基本決定於羥基和醛基兩種功能團。生物分子的功能團在其生物活性中起著重要的作用。
Ⅶ 有誰知道「甲氨基阿維菌素苯甲酸鹽」是哪一類農葯
殺蟲劑。
甲氨基阿維菌素苯甲酸鹽是一種微生物源低毒殺蟲、殺蟎劑,是在阿維菌素的基礎上合成的高效生物葯劑,具有活性高、殺蟲譜廣、可混用性好、持效期長、使用安全等特點,作用方式以胃毒為主,兼有觸殺作用。
其殺蟲機制是阻礙害蟲運動神經。不要在魚塘、蜂場、桑園及其周圍使用,葯液不要污染池塘等水域。對蜜蜂有毒,不要在果樹開花期使用。一般作物的安全採收間隔期為7天。
原葯為白色或淡黃色結晶粉末;熔點:141-146℃;溶於丙酮和甲醇、微溶於水、不溶於己烷;穩定性:在通常貯存的條件下穩定。
(7)農葯立體化學是哪裡的擴展閱讀:
甲氨基阿維菌素苯甲酸鹽在農葯領域的具體應用:
1、該品是目前國際能取代5種高毒農葯的新型、高效、低毒、安全、無公害、無殘留的生物殺蟲殺蟎剤。、殺蟲譜廣、無抗葯性。
2、具有胃毒、觸養作用。對蟎類、鱗翅目、鞘翅目害蟲活性。如在流菜、煙草、茶葉、棉花、果樹等經濟作物上使用,具有其它農葯無可比擬的活性。
尤其是對紅帶卷葉、煙蚜夜、煙草天鑕、小菜、甜葉葉、棉鈴蟲、姻草天鑕、早地夜振、紛紋夜、菜粉螟、甘藍橫條螟、番茄天、馬鈴君甲蟲等害蟲具有超高效。
3、用途廣泛用於蔬萊、果樹、棉花等農作物上的多種害蟲的防治。
4、用途本品具有高效、廣譜、安全、殘效期長特點,為優良的殺蟲、殺蟎劑,對防治棉玲蟲等翅目害蟲、蟎蟲、鞘翅目及同翅目害蟲有極高的活性,且不易使害蟲產生抗葯性。對人畜安全,可與大部分農葯混用。
Ⅷ 酚類化合物有哪些應用
酚類化合物
是芳烴的含羥基衍生物,根據其揮發性分揮發性酚和不揮發性酚。自然界中存在的酚類化合物大部分是植物生命活動的結果,植物體內所含的酚稱內源性酚,其餘稱外源性酚。酚類化合物都具有特殊的芳香氣味,均呈弱酸性,在環境中易被氧化。酚類化合物的毒性以苯酚為最大,通常含酚廢水中又以苯酚和甲酚的含量最高。目前環境監測常以苯酚和甲酚等揮發性酚作為污染指標。
環境中的酚污染主要指酚類化合物對水體的污染,含酚廢水是當今世界上危害大、污染范圍廣的工業廢水之一,是環境中水污染的重要來源。在許多工業領域諸如煤氣、焦化、煉油、冶金、機械製造、玻璃、石油化工、木材纖維、化學有機合成工業、朔料、醫葯、農葯、油漆等工業排出的廢水中均含有酚。這些廢水若不經過處理,直接排放、灌溉農田則可污染大氣、水、土壤和食品。
酚是一種中等強度的化學毒物,與細胞原漿中的蛋白質發生化學反應。低濃度時使細胞變性,高濃度時使蛋白質凝固。酚類化合物可經皮膚粘膜、呼吸道及消化道進入體內。低濃度可引起蓄積性慢性中毒,高濃度可引起急性中毒以致昏迷死亡。一般來講,酚進入人體後機體通過自身的解毒功能使之轉化為無毒物質而排出體外。只有當攝入量超過解毒功能時才有蓄積而導致慢性中毒,表現為頭暈、頭痛、精神不安、食慾不振、嘔吐腹瀉等症狀。
由於酚的用途極為廣泛,預防其污染的工作也很困難。在生產和使用酚的工廠必須建立嚴格的操作制度,謹防酚的外瀉。同時要搞好廢水的回收利用和生物氧化處理,嚴禁含酚廢水排入滲井、滲坑,以免污染地下水。
Ⅸ 農葯學的研究方向有哪些
農葯學的研究方向:
1、綠色農葯的分子設計及合成:發展、完善綠色農葯生物合理設計的理論及實踐,重點開展分子構效關系研究;選擇若干有研究基礎的重要靶標,利用化學生物學、生物化學、生物物理及結構生物學,研究這些具有農學意義的靶標酶與農葯分子的相互作用機理及結構,開展受體結構已知和受體結構未知的新葯設計,從生物學反饋信息中不斷提高所建模型的准確性,為高效率地設計合成新葯奠定良好的基礎並指導合成;發展農葯(包括對現有高效品種)的綠色有機合成方法研究,其中包括新綠色合成方法的設計、仿生合成、立體有擇合成,生物合成及組合化學合成等;
2、快速、靈敏、微量的新農葯篩選模型的建立及應用:尋找農葯新靶標,開展農葯靶標的化學分子生物學研究,建立一些有結構生物學基礎的農葯分子設計生物模型;發展、完善新農葯篩選模型,特別是快速、靈敏、微量的除草劑及殺蟲劑篩選模型,充分利用現代儀器分析方法及生物技術,建立多種微量的、以靶標酶為對象的除草劑及殺蟲劑通量篩選體系;
3、天然源農葯的研究:深入開展我國特有的天然動植物農葯活性物質研究,分離、分析天然源農葯活性成份,特別是天然源殺蟲劑、植物病毒抑制劑等,研究、抽提這些天然源農葯的葯效團結構,進一步對這些葯效團結構進行化學組合改造,合成、篩選有實用前景的生物活性物質。
Ⅹ 什麼是無毒農葯
無毒農葯是一種通過綠色工藝流程生產出來的比重小,純度高,超低用量,高選擇性,劑型輕便(如膠囊、晶體、可溶性粉劑、片劑),對人類健康及植物生長絕對安全,無毒、無味、無公害的環保型農用葯品。是用來影響和調控植物生長發育或繁殖特殊功能的活性分子。它不具備殺蟲、殺菌作用,不含激素成分,但可以抑制植物表面病毒擴散,誘導常規農葯、肥料提高其效果,物理調節和保護植物生態成長。促進果實良性發育,穩產高產。