1. 石墨烯是什麼
石墨烯是一種由碳原子以sp²雜化軌道組成六角型呈蜂巢晶格的二維碳納米材料。
石墨烯具有優異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫學和葯物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料。
英國曼徹斯特大學物理學家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機械剝離法成功從石墨中分離出石墨烯,因此共同獲得2010年諾貝爾物理學獎。
(1)化學教材哪裡講了石墨烯擴展閱讀:
石墨烯新團體標准發布,規定相關新產品命名方法。
隨著我國對石墨烯材料的開發和應用探索,以石墨烯材料改性或製造的新產品陸續上市。但部分新產品的名稱存在命名不科學、不準確,有的甚至以石墨烯為賣點誇大石墨烯應用效能,使公眾和下游應用企業對石墨烯相關產品真實性產生懷疑,影響產業健康有序發展。
指南對石墨烯產品的分類、命名原則及方法等進行詳細規定。例如,規定產品名稱描述應以特徵、用途相結合的命名方式,便於消費者辨識。
指南還規定,廠商應主動向社會公示產品相關信息內容,如使用石墨烯材料的基本信息、關於新增性能的第三方檢測報告等。
首次明確了石墨烯的內涵,提出了石墨烯材料等系列相關術語,此次修訂增加了石墨烯相關新知識及新認識,並與國際標準的差異進行對比。
參考資料來源:網路-石墨烯
參考資料來源:新華網-石墨烯新團體標准發布 規定相關新產品命名方法
2. 石墨烯是什麼它有什麼原理
石墨烯(Graphene)是一種由碳原子以sp2雜化軌道組成六角型呈蜂巢晶格的二維碳納米材料。
石墨烯具有優異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫學和葯物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料。 英國曼徹斯特大學物理學家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機械剝離法成功從石墨中分離出石墨烯,因此共同獲得2010年諾貝爾物理學獎。石墨烯常見的粉體生產的方法為機械剝離法、氧化還原法、SiC外延生長法,薄膜生產方法為化學氣相沉積法(CVD)。
石墨烯是什麼
石墨烯作為新材料產業的先導,在帶動傳統製造業轉型升級,培育新興產業增長點,推動大眾創業、萬眾創新的作用越來越顯著。在國家政策引導下,各地紛紛布局石墨烯。目前,我國石墨烯全產業鏈雛形初現,覆蓋從原料、制備、產品開發到下游應用的全環節,已基本形成以長三角、珠三角和京津冀魯區域為集合區,多地分布式發展的石墨烯產業格局。2016年,我國石墨烯市場總體規模突破40億元,已形成新能源領域應用、大健康領域應用、復合材料領域應用、節能環保領域應用、石墨烯原材料、石墨烯設備六大細分市場。
石墨烯材料自從 2004 年第一次被成功製造出來,就已經被科技界普遍的看好,認為石墨烯是一種顛覆性的全新材料,因其優異的導熱性和導電性將可能引領黑科技的革命,21 世紀也將成為「石墨烯時代」。
由於石墨烯材料擁有非常優異的導熱性及導電性,所以從上面子凡列舉的一些產品中就可以看到其特性被充分的利用,就用石墨烯電池來說,其導電性和轉換率都會高於傳統的鋰電池和聚合物電池,所以相關的產品也會變得更更極致和優秀。
3. 高中化學課本中提到過石墨烯么在那本書哪節中
是指富勒烯和C60嗎?有提過的。。好像在必修2還是有機化學里有。具體在哪我也忘了。。
4. 石墨烯是什麼材料
石墨烯是一種以sp²雜化連接的碳原子緊密堆積成單層二維蜂窩狀晶格結構的新材料,石墨烯具有優異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫學和葯物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料。
石墨烯是已知強度最高的材料之一,同時還具有很好的韌性,且可以彎曲,石墨烯的理論楊氏模量達1.0TPa,固有的拉伸強度為130GPa。而利用氫等離子改性的還原石墨烯也具有非常好的強度,平均模量可大0.25TPa。
由石墨烯薄片組成的石墨紙擁有很多的孔,因而石墨紙顯得很脆,然而,經氧化得到功能化石墨烯,再由功能化石墨烯做成石墨紙則會異常堅固強韌。
(4)化學教材哪裡講了石墨烯擴展閱讀:
石墨烯中電子載體和空穴載流子的半整數量子霍爾效應可以通過電場作用改變化學勢而被觀察到,而科學家在室溫條件下就觀察到了石墨烯的這種量子霍爾效應。
石墨烯中的載流子遵循一種特殊的量子隧道效應,在碰到雜質時不會產生背散射,這是石墨烯局域超強導電性以及很高的載流子遷移率的原因。石墨烯中的電子和光子均沒有靜止質量,他們的速度是和動能沒有關系的常數。
5. 石墨烯是什麼
石墨烯是一種由碳原子以sp²雜化軌道組成六角型呈蜂巢晶格的二維碳納米材料。
石墨烯內部碳原子的排列方式與石墨單原子層一樣以sp2雜化軌道成鍵,並有如下的特點:碳原子有4個價電子,其中3個電子生成sp2鍵,即每個碳原子都貢獻一個位於pz軌道上的未成鍵電子,近鄰原子的pz軌道與平面成垂直方向可形成π鍵,新形成的π鍵呈半填滿狀態。
研究證實,石墨烯中碳原子的配位數為3,每兩個相鄰碳原子間的鍵長為1.42×10-10米,鍵與鍵之間的夾角為120°。
除了σ鍵與其他碳原子鏈接成六角環的蜂窩式層狀結構外,每個碳原子的垂直於層平面的pz軌道可以形成貫穿全層的多原子的大π鍵(與苯環類似),因而具有優良的導電和光學性能。
(5)化學教材哪裡講了石墨烯擴展閱讀
當入射光的強度超過某一臨界值時,石墨烯對其的吸收會達到飽和。這些特性可以使得石墨烯可以用來做被動鎖模激光器。
這種獨特的吸收可能成為飽和時輸入光強超過一個閾值,這稱為飽和影響,石墨烯可飽和容易下可見強有力的激勵近紅外地區,由於環球光學吸收和零帶隙。由於這種特殊性質,石墨烯具有廣泛應用在超快光子學。石墨烯/氧化石墨烯層的光學響應可以調諧電。
更密集的激光照明下,石墨烯擁有一個非線性相移的光學非線性克爾效應。
溶解性:在非極性溶劑中表現出良好的溶解性,具有超疏水性和超親油性。
熔點:科學家在2015年的研究中表示約4125K,有其他研究表明熔點在5000K左右。
其他性質:可以吸附和脫附各種原子和分子。
6. 石墨烯的化學式是什麼 石墨烯能與什麼反應熔點多少
1、石墨烯的化學式:Cn。
2、石墨烯可與活潑金屬反應,也可以與氫氣反應得到石墨烷。
石墨烯是一種飽和的碳氫化合物,具有分子式(CH)n,其中所有的碳是sp雜化並形成六角網路結構,氫原子以交替形式從石墨烯平面的兩端與碳成鍵,石墨烷表現出半導體性質,具有直接帶隙。
3、石墨烯的熔點在5000K左右。
(6)化學教材哪裡講了石墨烯擴展閱讀
石墨烯的應用
作為電極材料,石墨烯是絕佳的負極材料,被認為是可以替代硅的晶元材料。另外,石墨烯在柔性屏幕、可穿戴設備、太陽能充電等領域的應用還有待挖掘。
石墨烯在可穿戴設備領域也具有一定應用空間。例如,愛爾蘭科學家正在開發基於石墨烯的靈活可穿戴感測器,並發現該感測器能夠檢測到用戶最細微的動作,包括跟蹤呼吸和脈搏。另外,該感測器還能實現自供電,也許未來能夠應用在智能服裝中。
7. 石墨烯的化學式
墨烯的化學式:C(n)
1、石墨烯的化學性質與石墨類似,石墨烯可以吸附並脫附各種原子和分子。當這些原子或分子作為給體或受體時可以改變石墨烯載流子的濃度,而石墨烯本身卻可以保持很好的導電性。
2、吸附其他物質時,如H+和OH-時,會產生一些衍生物,使石墨烯的導電性變差,但並沒有產生新的化合物。
3、石墨烯呈薄紗狀與碳納米管的管狀相比,更適合於生物材料方面的研究。並且石墨烯的邊緣與碳納米管相比,更長,更易於被摻雜以及化學改性,更易於接受功能團。
4、石墨烯可與活潑金屬反應。
5、石墨烯可在空氣中或是被氧化性酸氧化,通過該方法可以將石墨烯裁成小碎片。石墨烯氧化物是通過石墨氧化得到的層狀材料,經加熱或在水中超聲剝離過程很容易形成分離的石墨烯氧化物片層結構。
6、石墨烯內部的碳原子之間的連接很柔韌,當施加外力於石墨烯時,碳原子面會彎曲變形,使得碳原子不必重新排列來適應外力,從而保持結構穩定。這種穩定的晶格結構使石墨烯具有優秀的導熱性
石墨烯的應用
一、感測器
1、石墨烯可以做成化學感測器,這個過程主要是通過石墨烯的表面吸附性能來完成的,根據部分學者的研究可知,石墨烯化學探測器的靈敏度可以與單分子檢測的極限相比擬。
2、石墨烯獨特的二維結構使它對周圍的環境非常敏感。石墨烯是電化學生物感測器的理想材料,石墨烯製成的感測器在醫學上檢測多巴胺、葡萄糖等具有良好的靈敏性。
二、晶體管
1、石墨烯可以用來製作晶體管,由於石墨烯結構的高度穩定性,這種晶體管在接近單個原子的尺度上依然能穩定地工作。
2、相比之下,目前以硅為材料的晶體管在10納米左右的尺度上就會失去穩定性;石墨烯中電子對外場的反應速度超快這一特點,又使得由它製成的晶體管可以達到極高的工作頻率。
三、柔性顯示屏
1、消費電子展上可彎曲屏幕備受矚目,成為未來移動設備顯示屏的發展趨勢。柔性顯示未來市場廣闊,作為基礎材料的石墨烯前景也被看好。
四、新能源電池
1、新能源電池也是石墨烯最早商用的一大重要領域。美國麻省理工學院已成功研製出表面附有石墨烯納米塗層的柔性光伏電池板,可極大降低製造透明可變形太陽能電池的成本,這種電池有可能在夜視鏡、相機等小型數碼設備中應用。
2、石墨烯超級電池的成功研發,也解決了新能源汽車電池的容量不足以及充電時間長的問題,極大加速了新能源電池產業的發展。這一系列的研究成果為石墨烯
8. 九年級化學練習冊中,有一題說石墨烯可以造太空天梯,由碳原子構成,問一問它有何化學性質各位幫幫忙。
我們至今關於石墨烯化學知道的是:類似石墨表面,石墨烯可以吸附和脫附各種原子和分子。從表面化學的角度來看,石墨烯的性質類似於石墨,可利用石墨來推測石墨烯的性質。石墨烯化學可能有許多潛在的應用,然而要石墨烯的化學性質得到廣泛關注有一個不得不克服的障礙:缺乏適用於傳統化學方法的樣品。這一點未得到解決,研究石墨烯化學將面臨重重困難。