Ⅰ 階乘是什麼
階乘(factorial)是基斯頓·卡曼(ChristianKramp,1760–1826)於1808年發明的運算符號。對於數N,所有絕對值小於或等於N的同餘數之積,稱之為N的階乘,一個正整數的階乘是所有小於及等於該數的正整數的積,並且0的階乘為1。
一直以來,由於階乘定義的不科學,導致以後的階乘拓展以後存在一些理解上得困擾,和數理邏輯的不順。階乘從正整數一直拓展到復數。傳統的定義不明朗。所以必須科學再定義它的概念,真正嚴謹的階乘定義應該為:對於數n,所有絕對值小於或等於n的同餘數之積。
Ⅱ 什麼是階乘
階乘(factorial)是基斯頓·卡曼(christian
kramp,
1760
–
1826)於1808年發明的運算符號。
階乘,也是數學里的一種術語。
[編輯本段]【階乘的計算方法】階乘指從1乘以2乘以3乘以4一直乘到所要求的數。
例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。
例如所要求的數是6,則階乘式是1×2×3×……×6,得到的積是720,720就是6的階乘。例如所要求的數是n,則階乘式是1×2×3×……×n,設得到的積是x,x就是n的階乘。
[編輯本段]【階乘的表示方法】在表達階乘時,就使用「!」來表示。如x的階乘,就表示為x!
Ⅲ 階乘是什麼意思
階乘(factorial)是:所有小於及等於該數的正整數的積,並且0的階乘為1。自然數n的階乘寫作n!。
計算方法:
大於等於1
任何大於等於1 的自然數n 階乘表示方法:這樣 Gamma 函數實際上就是階乘的延拓。
Ⅳ 什麼是階乘
階乘是基斯頓·卡曼於 1808 年發明的運算符號,是數學術語。
一個正整數的階乘(英語:factorial)是所有小於及等於該數的正整數的積,並且有0的階乘為1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。
亦即n!=1×2×3×...×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n。
Ⅳ 什麼是階乘
階乘指從1乘以2乘以3乘以4一直乘到所要求的數。
5!=1*2*3*4*5
Ⅵ 階乘是什麼
階乘就是從自然數1到所給的數的所有自然數的乘積。
如的階乘寫作6!=1*2*3*4*5*6=720
Ⅶ 階乘是什麼意思
階乘是基斯頓·卡曼(Christian Kramp,1760~1826)於 1808 年發明的運算符號,是數學術語。
一個正整數的階乘(factorial)是所有小於及等於該數的正整數的積,並且0的階乘為1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。
亦即n!=1×2×3×...×(n-1)×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n