『壹』 圓的面積怎麼算
圓的面積可根據半徑或者直徑的值進行計算:
1、已經知道圓的半徑,那麼圓的面積S=π×r²;
2、已經知道圓的直徑,那麼圓的面積S=π×(d/2)²;
(1)圓的面積怎麼算擴展閱讀:
1、弧長角度公式
扇形弧長L=圓心角(弧度制)×R= nπR/180(θ為圓心角)(R為扇形半徑)
扇形面積S=nπ R²/360=LR/2(L為扇形的弧長)
圓錐底面半徑 r=nR/360(r為底面半徑)(n為圓心角)
2、扇形面積公式
R是扇形半徑,n是弧所對圓心角度數,π是圓周率,L是扇形對應的弧長。
也可以用扇形所在圓的面積除以360再乘以扇形圓心角的角度n,如下:
(L為弧長,R為扇形半徑)
推導過程:S=πr²×L/2πr=LR/2
(L=│α│·R)
『貳』 圓的面積公式是什麼
圓面積計算公式是:S=πr²或S=π*(d/2)²。
把圓平均分成若干份,可以拼成一個近似的長方形。長方形的寬就等於圓的半徑(r),長方形的長就是圓周長(C)的一半。長方形的面積是ab,那圓的面積就是:圓的半徑(r)乘以二分之一周長C,S=r*C/2=r*πr,有關的公式還有:
1、圓面積=圓周率×半徑×半徑
2、半圓的面積:S半圓=(πr2)÷2
3、半圓的面積=圓周率×半徑×半徑÷2
4、圓環面積: S大圓-S小圓=π(R2-r2)(R為大圓半徑,r為小圓半徑)
5、圓環面積=外大圓面積-內小圓面積
6、圓的周長=直徑×圓周率
7、半圓周長=圓周率×半徑+直徑
(2)圓的面積怎麼算擴展閱讀:
公式推導:圓周長公式
圓周長(C):圓的直徑(d),那圓的周長(C)除以圓的直徑(d)等於π,那利用乘法的意義,就等於 π乘以圓的直徑(d)等於圓的周長(C),C=πd。而同圓的直徑(d)是圓的半徑(r)的兩倍,所以就圓的周長(C)等於2乘以π乘以圓的半徑(r),C=2πr。
『叄』 圓的面積怎麼算
圓的面積公式:
。
圓周長(c):圓的直徑(D),那圓的周長(c)除以圓的直徑(D)等於π,那利用乘法的意義,就等於
π乘圓的直徑(D)等於圓的周長(C),C=πd。
而同圓的直徑(D)是圓的半徑(r)的兩倍,所以就圓的周長(c)等於2乘以π乘以圓的半徑(r),C=2πr。把圓平均分成若干份,可以拼成一個近似的長方形。
長方形的寬就等於圓的半徑(r),長方形的長就是圓周長(C)的一半。長方形的面積是ab,那圓的面積就是:圓的半徑(r)的平方乘以π,
。
(3)圓的面積怎麼算擴展閱讀:
圓周率的幾何演算法
古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家阿基米德(公元前287–212
年)
開創了人類歷史上通過理論計算圓周率近似值的先河。阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。
接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。
最後,他求出圓周率的下界和上界分別為223/71
和22/7,
並取它們的平均值3.141851
為圓周率的近似值。阿基米德用到了迭代演算法和兩側數值逼近的概念,稱得上是「計算數學」的鼻祖。
參考資料來源:搜狗網路-圓面積
參考資料來源:搜狗網路-圓周率
『肆』 圓的面積怎麼算
S=πr?或S=π*(d/2)?。
r:圓的半徑。d:圓的直徑。π:圓周率,是無限不循環小數,一般取值3.14。
約翰尼斯·開普勒運用無窮分割法,求出了許多圖形的面積。1615年,他將自己創造的這種求圓面積的新方法,發表在《葡萄酒桶的立體幾何》一書中。
他把圓分割成無窮多個小扇形,並果敢地斷言:無窮小的扇形面積,和它對應的無窮小的三角形面積相等。他在前人求圓面積的基礎上,向前邁出了重要的一步。
『伍』 圓的面積怎麼算
圓的面積:S=πr²=πd²/4
扇形弧長:L=圓心角(弧度制) * r = n°πr/180°(n為圓心角)
扇形面積:S=nπ r²/360=Lr/2(L為扇形的弧長)
圓的直徑: d=2r
圓錐側面積: S=πrl(l為母線長)
圓錐底面半徑: r=n°/360°L(L為母線長)(r為底面半徑)
1、圓的標准方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標准方程是(x-a)^2+(y-b)^2=r^2。
特別地,以原點為圓心,半徑為r(r>0)的圓的標准方程為x^2+y^2=r^2。
2、圓的一般方程:方程x^2+y^2+Dx+Ey+F=0可變形為(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:
(1)、當D^2+E^2-4F>0時,方程表示以(-D/2,-E/2)為圓心,以(√D^2+E^2-4F)/2為半徑的圓;
(2)、當D^2+E^2-4F=0時,方程表示一個點(-D/2,-E/2);
(3)、當D^2+E^2-4F<0時,方程不表示任何圖形。
3、圓的參數方程:以點O(a,b)為圓心,以r為半徑的圓的參數方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ為參數)
圓的端點式:若已知兩點A(a1,b1),B(a2,b2),則以線段AB為直徑的圓的方程為 (x-a1)(x-a2)+(y-b1)(y-b2)=0
圓的離心率e=0,在圓上任意一點的半徑都是r。
經過圓 x^2+y^2=r^2上一點M(a0,b0)的切線方程為 a0*x+b0*y=r^2
在圓(x^2+y^2=r^2)外一點M(a0,b0)引該圓的兩條切線,且兩切點為A,B,則A,B兩點所在直線的方程也為 a0*x+b0*y=r^2
(5)圓的面積怎麼算擴展閱讀
垂直於過切點的半徑;經過半徑的一端,並且垂直於這條半徑的直線,是這個圓的切線。
切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
切線的性質:(1)經過切點垂直於過切點的半徑的直線是圓的切線。(2)經過切點垂直於切線的直線必經過圓心。(3)圓的切線垂直於經過切點的半徑。
切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。
切割線定理: 圓的一條切線與一條割線相交於p點,切線交圓於C點,割線交圓於A B兩點 , 則有pC^2=pA·pB
割線定理:與切割線定理相似——同圓上兩條割線m、n交於p點,割線m交圓於A1 B1兩點,割線n交圓於A2 B2兩點
則pA1·pB1=pA2·pB2(可以把切割線定理看做是割線定理的極限情形)。
參考資料:圓面積的網路
『陸』 圓的面積是怎麼算的
圓面積公式的是由古代數學家不斷推導出來的。圓的面積計算公式為:S=πr²,S=π(d/2)²,(d為直徑,r為半徑,π是圓周率,通常取3.14)。因此,圓的面積只需用圓的半徑的平方乘以3.14即可。圓是一種規則的平面幾何圖形,圓面積是指圓形所佔的平面空間大小,常用S表示。
『柒』 圓的面積怎麼算為什麼
圓的面積公式為:S=πr²,S=π(d/2)²,(d為直徑,r為半徑,π是圓周率,通常取3.14),圓面積公式的是由古代數學家不斷推導出來的。
我國古代的數學家祖沖之,從圓內接正六邊形入手,讓邊數成倍增加,用圓內接正多邊形的面積去逼近圓面積。
古希臘的數學家,從圓內接正多邊形和外切正多邊形同時入手,不斷增加它們的邊數,從里外兩個方面去逼近圓面積。
古印度的數學家,採用類似切西瓜的辦法,把圓切成許多小瓣,再把這些小瓣對接成一個長方形,用長方形的面積去代替圓面積。
16世紀的德國天文學家開普勒,把圓分割成許多小扇形;不同的是,他一開始就把圓分成無窮多個小扇形。圓面積等於無窮多個小扇形面積的和,所以在最後一個式子中,各段小弧相加就是圓的周長2πR,所以有S=πr²。
與圓相關的公式:
1、半圓的面積:S半圓=(πr^2)/2。(r為半徑)。
2、圓環面積:S大圓-S小圓=π(R^2-r^2)(R為大圓半徑,r為小圓半徑)。
3、圓的周長:C=2πr或c=πd。(d為直徑,r為半徑)。
4、半圓的周長:d+(πd)/2或者d+πr。(d為直徑,r為半徑)。
5、扇形弧長L=圓心角(弧度制)×R= nπR/180(θ為圓心角)(R為扇形半徑)
6、扇形面積S=nπ R²/360=LR/2(L為扇形的弧長)
7、圓錐底面半徑 r=nR/360(r為底面半徑)(n為圓心角)
於無窮多個小扇形面積的和,所以在最後一個式子中,各段小弧相加就是圓的周長2πR,所以有S=πr²。