A. 地理信息的可視化表現形式有哪些
地圖是空間實體的符號化模型,是地理信息系統產品的主要表現形式,地圖具有以下特徵: 1.採用特殊數學法則產生的可量測性:製作地圖採用地圖投影、比例尺和定向將地球表面的實體投影到二維平面並製成各種分幅的地圖。 2.使用符號化模型產生的直觀性:地圖使用符號表示實體,符號的視覺感受由符號的視覺變數決定,視覺變數包括形狀、尺寸、色相、色值、色強度、圖案排列、圖案方向、圖案紋理等。地圖符號根據其形式可分為點狀符號、線狀符號、面狀符號。地圖的符號模型簡化了地物圖形,可以選擇性地表示地物並與地物的實際大小無關,能夠表示視覺上相互重疊的多種要素和不能直接看到的現象,還可反映實體的質量特徵。 3.採用制圖綜合產生的一覽性:制圖綜合對實體質量特徵進行分類分級,對次要的實體或實體特徵進行選取概括,使得反映的地理現象主次分明,確切地表示出各要素間相互關系,更易於理解事物本質和規律。 根據地理實體的空間形態,常用的地圖種類有點位符號圖。線狀符號圖、面狀符號圖、等值線圖、三維立體圖、暈渲圖等。點位符號圖在點狀實體或面狀實體的中心以制圖符號表示實體質量特徵;線狀符號圖採用線狀符號表示線狀實體的特徵;面狀符號圖在面狀區域內用填充模式表示區域的類別及數量差異;等值線圖將曲面上等值的點以線劃連接起來表示曲面的形態;三維立體圖採用透視變換產生透視投影使讀者對地物產生深度感並表示三維曲面的起伏;暈渲圖以地物對光線的反射產生的明暗使讀者對三維表面產生起伏感,從而達到表示立體形態的目的。 圖像也是空間實體的一種模型,它不採用符號化的方法,而是採用人的直觀視覺變數(如灰度、顏色、模式)表示各空間位置實體的質量特徵。它一般將空間范圍劃分為規則的單元(如正方形),然後在根據幾何規則確定的圖像平面的相應位置用直觀視覺變數表示該單元的特徵。 非空間信息可採用統計圖表表示。統計圖將實體的特徵和實體間與空間無關的相互關系採用圖形表示,它將與空間無關的信息傳遞給使用者,使得使用者對這些信息有全面、直觀的了解。統計圖常用的形式有柱狀圖、扇形圖、直方圖、折線圖和散點圖等。統計表格將數據直接表示在表格中,使讀者可直接看到具體數據值。 隨著數字圖像處理系統、地理信息系統、制圖系統以及各種分析模擬系統和決策支持系統的廣泛應用,數字產品成為廣泛採用的一種產品形式,供信息作進一步的分析和輸出,使得多種系統的功能得到綜合。數字產品的製作是將系統內的數據轉換成其它系統採用的數據形式。
B. 地理信息系統動態可視化方式有哪些
地理信息系統中的空間信息可視化從表現內容上來分:
有地圖(圖形)、多媒體、虛擬現實等,從空間維數上來分有:二維可視化、三維可視化、多維動態可視化等。
地理信息可視化是運用圖形學、計算機圖形學和圖像處理技術,將地學信息輸入、處理、查詢、分析以及預測的結果和數據以圖形符號、圖標、文字、表格、視頻等可視化形式顯示並進行交互的理論、方法和技術。
在地理信息系統中,可視化則以地理信息科學、計算機科學、地圖學、認知科學、信息傳輸學與地理信息系統為基礎,並通過計算機技術、數字技術、多媒體技術動態,直觀、形象地表現、解釋、傳輸地理空間信息並揭示其規律,是關於信息表達和傳輸的理論、方法與技術的一門學科。
C. 地理信息系統
地理信息系統是計算機科學、地理學、測量學和地圖學等多門學科的交叉,它是以地理空間資料庫為基礎,採用地理模型分析方法實時提供多種空間的和動態的地理信息,為地理研究和地理決策服務的計算機技術系統。
從表現形式來看,GIS表現為計算機軟硬體系統,其核心是管理、計算、分析地理坐標位置信息及相關位置上屬性信息的資料庫系統。它表達的是空間位置及所有與位置相關的信息,所以,GIS又是地球空間實體的再現和綜合,其信息的基本表達形式是各種二維或三維電子地圖。因此,GIS也可簡單定義為「用於採集、模擬、處理、檢索、分析和表達地理空間數據的計算機信息系統」。
(一)GIS發展簡史
GIS最早起源於20世紀60年代「要把地圖變成數字形式的地圖,便於計算機處理分析」這樣的目的。1963年,加拿大測量學家R.F.Tomlinson首先提出了GIS這一術語,並建成世界上第一個GIS(加拿大地理信息系統,CGIS),用於自然資源的管理和規劃。那時的GIS注重於空間數據的地學處理。
20世紀70年代以後,隨著計算機軟、硬體水平的提高,以及政府部門在自然資源管理、規劃和環境保護等方面對空間信息進行分析、處理的需求,GIS得到了鞏固和發展。
進入20世紀80年代,GIS的應用領域迅速擴大,商業化的軟體開始進入市場,其應用從基礎信息管理與規劃轉向空間決策支持分析,地理信息產業的雛形開始形成。
20世紀90年代以後,伴隨著計算機技術和網路技術的迅猛發展,GIS的應用也日趨深化和廣泛,在國土資源、農業、氣象、環境、城市規劃等領域成為常備的工作系統。尤其是1998年「數字地球」的概念被提出以後,GIS在全球得到了空前迅速的發展,廣泛應用於各個領域,產生了巨大的經濟和社會效益。
我國GIS的發展自20世紀80年代初開始,以1980年中國科學院遙感應用研究所成立全國第一個GIS研究室為標志,經歷了准備(1980~1985年)、發展(1985~1995年)、產業化(1996年以後)3個階段。尤其是近年來,國內出現了不少優秀的GIS軟體。
(二)GIS的最新發展
1.日趨與計算機信息技術融合
近年來隨著計算機軟、硬體技術和通信技術的高速發展,GIS技術也得到了迅速的發展和更廣泛的應用,並日趨與主流IT技術融合,成為信息技術發展的一個新方向。
GIS發展的動力一方面來自於日益廣泛的應用領域對GIS不斷提高的要求;另一方面,計算機科學的飛速發展為GIS提供了先進的工具和手段。許多計算機領域的新技術,如面向對象技術、三維技術、圖像處理和人工智慧技術都可以直接應用到GIS中;同時,由於空間技術的迅猛發展,特別是遙感技術的發展,提供了地球空間環境中不同時相的數據,使GIS的作用日漸突出,GIS不斷升級並能提供存儲、處理和分析海量地理數據的環境。
組件式GIS技術的發展使之可以與其他計算機信息系統無縫集成、跨語言使用,並提供了無限擴展的數據可視化表達形式。
2.動態、多源、多維、網路化
最新GIS技術將逐漸擺脫先前的主要處理靜態的、二維的、數字式的地圖技術的約束,而從傳統的靜態地圖、電子地圖發展到能對空間信息進行可視化和動態分析、動態模擬,支持動態的、可視化的、交互的環境來處理、分析、顯示多維和多源地理空間數據。其中,可視化模擬技術能使人們在三維圖形世界中直接對具有形態的信息進行實時交互操作;虛擬現實技術以三維圖形為主,結合網路、多媒體、立體視覺、新型感測技術,能創造一個讓人身臨其境的虛擬的數字地球或數字城市。
先進的對地觀測技術、互操作技術、海量數據存儲和壓縮技術、網路技術、分布式技術、面向對象技術、空間數據倉庫、數據挖掘等技術的發展都為GIS的發展和創新創造了新的手段。
(三)第四代GIS技術
隨著計算機硬體性能的提高以及面向對象、網路和數據挖掘等主流IT技術的發展,在科技部有關部門的倡導下,目前國內學術界又提出了第四代GIS技術的概念。第四代GIS技術將主要有如下特點:
(1)支持「數字地球」或「數字城市」概念的實現,從二維向多維發展,從靜態數據處理向動態數據處理發展,具有時序數據處理能力。
(2)基於網路的分布式數據管理及計算、WebGIS和B/S體系結構,用戶可以實現遠程空間數據調用、檢索、查詢、分析,具有聯機事務管理(OLTP)和聯機分析(OLAP)管理能力。
(3)面向空間實體及其相互關系的數據組織和融合,具有矢量和遙感影像數據互動等多源數據的裝載與融合能力,可實現多尺度比例尺數據無縫融合與互動。
(4)具有統一的海量數據存儲、查詢和分析處理能力及基於空間數據的數據挖掘和強大的模型支持能力。
(5)具有與其他計算機信息系統的整體集成能力。例如與MIS、ERP、OA等各種企業信息化系統的無縫集成;微型、嵌入式GIS與各種掌上終端設備集成,如PDA、手機、GPS接收設備等。
(6)具有虛擬現實表達及自適應可視化能力,針對不同的用戶出現不同的用戶界面及地圖和虛擬現實效果。
(四)GIS的應用
人類使用的信息中有80%與地理位置和空間分布有關,所以GIS具有非常廣泛的應用。目前,GIS已經比較成熟地應用於軍事、自然資源管理、土地和城市管理、電力、電信、石油和天然氣、城市規劃、交通運輸、環境監測和保護、110和120快速反應系統等。
今後,GIS的應用將在市場分析、企業客戶關系管理、銀行、保險、人口統計、房地產開發、個人位置服務等領域得到廣泛的應用,這些領域將是GIS產業發展的新的增長點。實際上,GIS的應用將加速度地深入人們的工作和生活的各個方面。GoogleEarth的流行就是GIS技術深入到日常生活每一個角落的明證。
由於地理信息在人類生活和國民經濟中的重要作用,GIS在未來的幾十年中將保持高速發展的勢頭,成為IT高科技領域的核心技術。
近幾年來,隨著移動通信技術的發展,GIS的應用范圍迅速擴展到人們的日常生活中。集成GIS、GPS、GSM的技術已開始廣泛應用於車輛安全防範系統和調度系統,為人們提供車輛反劫防盜、報警、道路指引、醫療救護以及在此系統平台基礎上擴展各種電子商務增值服務。
以醫療救護為例,當患者向監控中心請求急救時,監控中心可以從GIS電子地圖上查看到患者的具體位置,並同時搜索最近的急救車輛,讓最近的車輛前去接患者。患者進入救護車後,監控中心可以通過雙向通話功能,指導救護車上的醫生實施救護治療,同時通過GIS的最優路徑功能,給救護車指引道路,使其以最快的速度到達醫院或急救中心。而在救護車行進的過程中,患者的家屬可以通過互聯網立即上網查詢救護車的行進位置及患者的狀態信息。通過GIS,並結合GPS和GSM無線通信及網路,使患者、家屬、救護車及醫生之間建立了無縫溝通體系,最終使患者能得到快速、及時的治療。
如果在車輛移動目標、家居固定點目標、重點保護單位甚至路燈上都安裝了GPS、GSM或其他無線通信設備,那麼我們在城市生活中,無論是開車、行走或者是在單位、在家裡,都可以通過由GIS、GPS、互聯網以及無線通信技術構成的綜合服務系統獲得急救、報警和各種商務服務,真正使我們處於立體的、全方位的數字化生活中,體驗數字空間高科技價值。
GIS、RS、GPS等構成的空間信息技術將是未來發展最快的、最激動人心的領域之一,它結合通信及其他IT技術,為人類展現了一種全新的工作和生活模式(A.R.Mermut,H.Eswaran,2001)。當利用最新的GIS技術把城市、國家乃至整個地球都高度濃縮到計算機屏幕上的時候,人類對自己的命運和未來就有了更充分的把握。
(五)GIS與土地管理
GIS早已不限於地理學研究和應用的領域,目前已與各行各業和我們的日常生活產生了千絲萬縷的聯系,更重要的是它的應用領域還在不斷擴大,甚至可觸及企業信息化的過程中。
GIS應用於土壤科學的研究,它是現實世界的一個模型和模擬實現。土壤資源信息可以在GIS系統中進行存取、變換和對話式操作,作為土壤資源分類、評價、規劃、管理與利用決策的依據,為土壤資源可持續利用服務。GIS應用於土壤學研究的各個方面,包括:①土壤制圖技術及土壤采樣技術;②土壤侵蝕預測與評價;③土壤資源污染與防治;④土壤養分流失評價;⑤土壤資源評價和管理;⑥作物生長模擬等。具體如1983年美國土壤保持局開發出農用土地評價和用地估計系統,系統中的農用土地評價包括土壤生產力的分等定級、土壤適宜性評價、土壤生產力潛力評價。1989年美國土壤保持局運用土壤信息系統保護土壤生態環境,控制土壤污染。1990年土壤侵蝕預測模型在土壤信息系統中已經能夠成功運用,主要採用的分析手段有土壤侵蝕諾漠圖、微機軟體圖、小溪河岸侵蝕諾漠圖。
1.建立為農業生產服務的應用系統
如日本的農耕地土地資源信息系統,它包括了土壤信息系統、作物栽培試驗信息系統、農業氣象信息系統等子系統;保加利亞的計算機農業綜合管理系統從20世紀80年代初開始運行。
進入20世紀90年代,GIS在土壤學研究領域的應用方面繼續拓展,其作用和地位日益受到關注。從1994年開始的第15、16、17屆國際土壤大會上持續討論了土壤信息系統在持續農業和全球變化中的應用、土壤資料庫的結構和聯網等有關問題。同時,在應用上進一步趨向農業實際生產,直接服務於農場管理和經營,如進行農業技術咨詢、牧場水源選點、作物生產管理、機械化施肥等方面。
中國的土壤工作者於20世紀80年代中期也開始進行土壤資料庫建立、土壤信息系統的研製和應用工作。1986年底,北京大學遙感中心等主持了土壤侵蝕信息系統研究,建立了區域土壤侵蝕信息系統,這是我國較早關於土壤信息系統方面的研究。1989年,南京土壤研究所用兩年時間研究了1∶50萬東北三江平原土壤信息系統土壤圖與資料庫的建立;1990年,又研究了1∶5萬江西紅壤生態站土壤信息系統土壤侵蝕圖;1991年,在「利用信息系統技術編制土壤退化圖」研究中,應用從土壤土地資料庫建立到土壤退化評價方法等一系列現代信息系統技術,編制出了實驗區的土壤水蝕危害和風蝕評價圖;1992年,又基本完成了海南島土壤和土地利用信息庫及信息系統制圖工作。1991年,中國科學院沈陽應用生態研究所主持了「區域微機土壤信息系統的建立與應用」研究,在吉林省農安縣的試驗結果表明,這是一個簡單但實用的土壤信息系統。1999年,胡月明等運用基本土壤資料庫建立了紅壤分類和評價的信息系統。
2.預測土壤空間變化及分布
由於GIS技術在土壤制圖中的深入應用,怎樣更准確地由有限的單個點位的土壤原始數據分析土壤屬性的空間分布成為關注的焦點。具體來說,由於土壤資料庫的信息來源於土壤分類、分色制圖及制圖的綜合,產生了土壤空間分異類型的位移,而現代GIS技術又要求大量信息源,因此許多土壤科學家將興趣集中到土壤空間變異性正確表達(即土壤圖在GIS中的正確表達)的研究上。
(1)地形分析。Morre、Bourennane、Gessier和Oden等的研究均表明,某地區土壤屬性與該地區的地形地貌特徵和景觀位置有明顯的相關性,也就是與土壤的成土過程密切相關,可用下式表示:
中國耕地質量等級調查與評定(廣東卷)
式中:
Si——土壤屬性如土壤厚度、pH等;
i——由氣候、母質、地貌歷史、植被等因素決定的某地區海拔、坡度、坡形凹凸、水流長度和特定流域面積等原始地形數據可以通過一定精度的DEM計算出,復合地形數據,可以依經驗判斷或根據描述下墊面的物理發生過程的方程式進行簡化。DEM可以由GIS技術生成,所以GIS的應用和地形分析可以提高土壤屬性空間分布預測的精度。
(2)地質統計學與GIS的結合。GIS在存儲、查詢和顯示地理數據方面發展得相當快,但在提供空間分析模塊方面則發展得較慢。由於缺少通用的空間分析模塊,使得GIS在解決某些空間問題中的應用受到很大的限制。
地質統計學是由南非礦山地質工程師D.G.Krige於1951年提出的,因此這一理論也以「克里格法」(Kriging)來命名,並由法國地質學家Dr.Matheron於1962年完善並創立。該學科在礦產儲量研究方面起到了巨大作用。這是一種求最優、線形、無偏內插估計量值的方法(BLUE),在充分考慮信息樣品的形狀、大小及其與待估塊段相互間的空間分布位置等幾何特徵以及品位的空間結構以後,利用變異函數(Varigram)為工具,對每一樣品值分別賦予一定的權系數,加權平均來估計塊段品位。
國內外土壤科學家已廣泛地應用克里格法來預測非采樣點的土壤屬性,常用的方法有普通克里格法(OK)、泛克里格法(UK)、指示克里格法(IK)、協同克里格法(CK)、回歸克里格法(RK)、點克里格法(PK)、塊克里格法(BK)等。他們的研究還表明,在應用克里格法建立模型的時候,綜合應用土壤和土地信息,如土壤分類、參比地區土壤屬性、坡度、高程等,可以大大提高克里格法的插值精度,還可以降低由於測定大量樣品而需要的成本,也可以減少由於樣品點太少而帶來的誤差。我國從20世紀80年代開始利用克里格法研究土壤參數的空間變異性,2000年以後在這方面的報道已經越來越多。
近幾年來,一些學者開始研究地質統計學和GIS之間的相互關系,並在GIS軟體中提供一些空間分析功能。例如,美國聖巴巴拉NCGIA的SAN模型提供了在ArcGIS軟體中計算和顯示空間自相關和其他空間量的功能,二者的相互結合一方面可以大大加強GIS的分析功能,使大量數據所隱含的空間信息得以表達,發揮更大的作用;另一方面,也可以增強空間分析的能力。考慮到空間分析技術目前的發展十分迅速,新理論不斷出現,空間分析模塊已經成為GIS中的必選模塊。
D. 地理信息系統功能的圖形顯示
GIS來源於地圖,也離不開地圖。GIS的一個基本功能就是能根據用戶的要求,通過對數據的提取和分析,以圖形的方式表示結果。當GIS數據被描繪在地圖上時,信息就變得容易理解和解釋。GIS不只是為了有效地存儲、管理、查詢和操作地理數據,更重要的是以可視化的形式將數據或經過深加工的地理信息呈現在用戶面前,方便地通過圖形認識地理空間實體和現象及其相互關系。
地理信息系統為用戶提供了許多用於地理數據表現的工具,其形式既可以是計算機屏幕顯示,也可以是諸如報告、表格、地圖等硬復制圖件,尤其要強調的是地理信息系統的地圖輸出功能。一個好的地理信息系統應能提供一種良好的、互動式的制圖環境,以供地理信息系統的使用者能夠設計和製作出高質量的地圖。
因為地理比例尺對於地理研究的性質具有決定意義,所以需要根據不同的詳略程度,允許地圖存在多級比例尺數據源。用戶對地理環境既需要有宏觀上的認識,同時也有觀察局部細節微觀上的要求。因此,為了能夠全面、充分地反映系統所關心區域的空間地理信息,有必要採用多種比例尺共存的方式,以滿足GIS的多層次需求。某一地區在某一比例尺條件下的地理資料,不僅代表了在該種比例尺條件下對於該區域地理空間結構的抽象和概括,而且也代表了在該種比例尺條件下對於該區域地理功能的抽象和概括。
多比例尺GIS中空間數據的最大特點是對同一地理實體的數據表達不同。
由於在地理信息系統中的地圖數據採取了分層組織管理方法,因而在顯示時也可以採取該方法,即同比例尺條件下可以採用多圖層方式來表達地理實體。
除了常見的二維平面地圖之外,地理信息三維顯示也成為地理信息一個重要的表現方式。利用三維顯示技術,可以更為直觀形象地表現地理環境信息,更容易讓用戶接受和理解。
E. 地圖的可視化表達理論
地圖是空間實體的符號化模型,是地理信息系統產品的主要表現形式,地圖具有以下特徵: 1.採用特殊數學法則產生的可量測性:製作地圖採用地圖投影、比例尺和定向將地球表面的實體投影到二維平面並製成各種分幅的地圖。 2.使用符號化模型產生的直觀性:地圖使用符號表示實體,符號的視覺感受由符號的視覺變數決定,視覺變數包括形狀、尺寸、色相、色值、色強度、圖案排列、圖案方向、圖案紋理等。地圖符號根據其形式可分為點狀符號、線狀符號、面狀符號。地圖的符號模型簡化了地物圖形,可以選擇性地表示地物並與地物的實際大小無關,能夠表示視覺上相互重疊的多種要素和不能直接看到的現象,還可反映實體的質量特徵。 3.採用制圖綜合產生的一覽性:制圖綜合對實體質量特徵進行分類分級,對次要的實體或實體特徵進行選取概括,使得反映的地理現象主次分明,確切地表示出各要素間相互關系,更易於理解事物本質和規律。 根據地理實體的空間形態,常用的地圖種類有點位符號圖。線狀符號圖、面狀符號圖、等值線圖、三維立體圖、暈渲圖等。點位符號圖在點狀實體或面狀實體的中心以制圖符號表示實體質量特徵;線狀符號圖採用線狀符號表示線狀實體的特徵;面狀符號圖在面狀區域內用填充模式表示區域的類別及數量差異;等值線圖將曲面上等值的點以線劃連接起來表示曲面的形態;三維立體圖採用透視變換產生透視投影使讀者對地物產生深度感並表示三維曲面的起伏;暈渲圖以地物對光線的反射產生的明暗使讀者對三維表面產生起伏感,從而達到表示立體形態的目的。 圖像也是空間實體的一種模型,它不採用符號化的方法,而是採用人的直觀視覺變數(如灰度、顏色、模式)表示各空間位置實體的質量特徵。它一般將空間范圍劃分為規則的單元(如正方形),然後在根據幾何規則確定的圖像平面的相應位置用直觀視覺變數表示該單元的特徵。 非空間信息可採用統計圖表表示。統計圖將實體的特徵和實體間與空間無關的相互關系採用圖形表示,它將與空間無關的信息傳遞給使用者,使得使用者對這些信息有全面、直觀的了解。統計圖常用的形式有柱狀圖、扇形圖、直方圖、折線圖和散點圖等。統計表格將數據直接表示在表格中,使讀者可直接看到具體數據值。 隨著數字圖像處理系統、地理信息系統、制圖系統以及各種分析模擬系統和決策支持系統的廣泛應用,數字產品成為廣泛採用的一種產品形式,供信息作進一步的分析和輸出,使得多種系統的功能得到綜合。數字產品的製作是將系統內的數據轉換成其它系統採用的數據形式。
F. 地理信息可視化的輸出方式
空間信息輸出方式 一般地理信息系統軟體都為用戶提供三種主要的圖形圖像輸出和屬性數據報表輸出方式。屏幕顯示主要用於系統與用戶互動式的快速顯示,是比較廉價的輸出產品,需以屏幕攝影方式做硬拷貝,可用於日常的空間信息管理和小型科研成果輸出;矢量繪圖儀制圖用來繪制高精度的比較正規的大圖幅圖形產品;噴墨列印機,特別是高品質的激光列印機已經成為當前地理信息系統地圖產品的主要輸出設備。
G. 三維地理信息系統的簡介
三維是將採集以及經運算分析後對數據的表現、展示。三維數據相對二維數據更能表現出客觀實際。
三維GIS與二維GIS一樣,需要具備最基本的空間數據處理功能,如數據獲取、數據組織、數據操縱、數據分析和數據表現等。相比於二維GIS,三維GIS具有以下優勢。
空間信息的展示更為直觀。從人們懂得通過空間信息來認識和改造世界開始,空間信息主要是以圖形化的形式存在的。然而,用二維的圖形界面展示空間信息是非常抽象的,只有專業的人士才懂得使用。相比二維GIS,三維GIS為空間信息的展示提供了更豐富、逼真的平台,使人們將抽象難懂的空間信息可視化和直觀化,人們結合自己相關的經驗就可以理解,從而做出准確而快速的判斷。毫無疑問,三維GIS在可視化方面有著得天獨厚的優勢。雖然三維GIS的動態交互可視化功能對計算機圖形技術和計算機硬體也提出了特殊的要求,但是一些先進的圖形卡、工作站以及帶觸摸功能的投影設備的陸續問世,不僅完全可以滿足三維GIS對可視化的要求,還可以帶來意想不到的展示和體驗效果。
多維度空間分析功能更加強大。空間信息的分析過程,往往是復雜、動態和抽象的,在數量繁多、關系復雜的空間信息面前,二維GIS的空間分析功能常具有一定的局限性,如淹沒分析、地質分析、日照分析、空間擴散分析、通視性分析等高級空間分析功能,二維GIS是無法實現的。由於三維數據本身可以降維到二維,因此三維GIS自然也能包容二維GIS的空間分析功能。三維GIS強大的多維度空間分析功能,不僅是GIS空間分析功能的一次跨越,在更大程度上也充分體現了GIS的特點和優越性。
H. 地理信息系統(GIS)
地理信息系統(GIS)是計算機科學、地理學、測量學、地圖學等多門學科綜合的技術。目前國際上普遍承認。雖然GIS是一門多學科綜合的邊緣學科,但其核心是計算機科學,基本技術是資料庫、地圖可視化及空間分析,是處理地理數據的輸入、輸出、管理、查詢、分析和輔助決策的計算機系統。地質環境評價主要是綜合考慮影響環境地質諸多方面的要素,藉助恰當的數學模型和專家經驗,對研究區的環境地質進行分區。
利用GIS可以實現地質環境信息的管理、可視化、查詢、輸出等功能,操作簡單、移植性強。把GIS技術應用在地質環境評價與災害預測中,其優點固然很多,但總的說來也存在如下的一些問題:
(1)在生態環境評價中,一般的GIS軟體雖然都能夠提供諸如數據檢索、疊加分析、屬性統計分析、數字地面模型(DTM)等各種空間分析功能,但是要想滿足為解決實際問題進行的專業分析的數據要求,僅僅依靠這些空間分析方法往往還很不夠,這就要求我們在GIS基礎軟體平台的基礎上進行二次開發,拓展其空間分析功能,提取我們感興趣的信息,但是具體如何操作,目前仍是一個亟需與相關學科的專家學者們相互協作、共同探討的問題。
(2)地質環境評價具有多因素、多層次、不確定性強等特點,目前在利用GIS眾多的評價預測模型中,不管是多災種還是單災種評價,人們都在努力尋求一種普遍適合的模型來解決地質環境的評價。雖然普遍的評價模型在宏觀決策中有重要的意義,適合建立面向大眾和政府的決策支持系統,但對中小尺度范圍的評價時往往不盡如人意,因此尋求特定地區特定的地質環境評價模型很有必要。
(3)地質環境評價工作是一項復雜的系統工程,數據採集和處理的工作量非常大,會涉及到地層、水文、地震及人類活動等各個方面,對於這些資料的搜集和整理,必然會涉及輸入到GIS中資料的准確性問題,因為GIS所能完成的工作只是依據所得到的資料,對其作出相應的處理,也就是說「如果輸入GIS的數據是『垃圾』,輸出的結果也只會是『垃圾』,這不會因昂貴的設備和高級技術人才而改變」。因此,我們必須對所有的資料做出必要的、合理的取捨,以保證輸入GIS的數據合理。
(4)從GIS在地質災害研究中的應用來看,就兩者的結合方式而言,大部分應用都集中在將GIS用於數據的前後期處理和結果的顯示輸出方面,兩者的結合還處於低階水平。作為緊緊追隨工業標准化要求發展的GIS技術,標准化適當數據的缺乏也構成其廣泛應用的桎梏;此外,GIS軟體處理分析能力以及對於數據誤差分析能力的不足、GIS處理包括時間在內的四維能力的不足、災害模型建立的高難度性以及機構間協調不夠而造成的成果用戶面太窄等因素都暫時限制了GIS在地質災害研究中的應用。
I. 什麼是地理空間數據,它有哪些表現形式
地理空間數據,英文名稱:Geospatial data,定義:面向主題的、集成的、動態更新的、持久的空間數據集合。所屬學科:地理學(一級學科);地理信息系統(二級學科)空間數據:是數據的一種特殊類型。它是指凡是帶有空間坐標的數據。地理空間數據:是空間數據的一種特殊類型。它是指帶有地理坐標的數據,包括資源、環境、經濟和社會等領域的一切帶有地理坐標的數據,是地理實體的空間特徵和屬性特徵的數字描述。
科技名詞定義中文名稱:地理實體的空間特徵表現為地理實體的幾何(定位)特徵(地理實體的位置、形狀、大小及其分布特徵)和實體間的空間關系。地理實體的屬性(定性)特徵表現為實體的數量特徵、質量特徵和時間特徵。定位是指一個坐標系裡空間實體都具有唯一的空間位置。定性是指有關空間實體的自然屬性,它伴隨著空間實體地理位置。時間特徵是指空間實體隨時間的變化而變化。
J. 什麼是虛擬現實它在GIS可視化中的意義及發展前景如何
地學現象與地學本質規律密不可分,地學可視化作為科學計算可視化在地學中的分支,以模擬、抽象和再現各種地學現象為核心任務,一直是地球信息科學中的重要組成部分。可視化系統是GIS系統中的重要組成部分,反映了GIS系統對空間信息的表達能力,也是衡量GIS系統的重要指標。
GIS二維可視化沿用傳統制圖學的手段,通過各種專題圖,符號庫等地圖學的抽象符號來表達地理信息,對地理信息提供了一種宏觀的抽象表達方式,大大簡化了人們對地圖的使用、查詢和分析。但是二維的地理信息系統提供給用戶的僅僅是二維的平面圖形,在可視化程度方面比傳統的紙質地圖並沒有實質性的改善,隨著GIS應用不斷深入,這已經遠遠不能滿足人們的視覺要求。世界原本就是處在三維空間中的,二維的可視化將現實世界簡化為平面上二維投影的概念模型註定了它在描述三維空間現象的局限性,解決這一問題的有效手段就是三維GIS可視化。計算機圖形學和各種圖形硬體技術的不斷發展以及人們對視覺要求的不斷提高,也為三維GIS可視化的發展提供了動力,創造了條件。
目前,一些GIS廠商已經開發、提供了三維可視化的系統,但這些系統由於各方面的原因沒有能夠做到向下兼容,將二維系統與三維系統完全割裂,不僅數據無法直接共享,而且三維場景製作過程復雜。
理想的可視化方式應該是在滿足人們可視化需求、提供高性能三維可視化功能的基礎上,還能夠完全兼容二維的可視化表達方式,提高重復使用能力,降低開發製作費用,具體內容包括:
1)兼容已有的二維GIS數據;
2)兼容已有的二維專題圖製作方式;
3)兼容已有的二維符號庫系統;
4)兼容已有的二維GIS交互方式。
二維、三維的一體化可以充分有效地利用豐富的二維空間數據資源,同時又可以滿足對三維建模和可視化的需要,實現二維向三維GIS平滑過渡,並與動態GIS結合,實現多維動態GIS。目前,國際和國內一些有遠見的GIS企業已開始研究二維和三維的一體化技術,二維與三維一體化的商業化GIS軟體將有望在「十一五」中期推出。