導航:首頁 > 地理科目 > 地理加權回歸系數是什麼

地理加權回歸系數是什麼

發布時間:2023-08-04 12:25:47

『壹』 地理加權回歸是怎麼一回事(GWR)

1 http://ke..com/view/1189359.html?tp=0_00
2 http://www.cqvip.com/qk/91153A/200803/27235808.html
3 http://www.pinggu.org/bbs/dispbbs.asp?boardid=64&ID=213568
他是空間經濟計量學的一個模型
D.P.McMillen和J.F.McDonald(1997),C.Brunsdon,A.S.Fotheringham;MartinCharlton(1996),提出地理加權回歸模型(簡稱GWR模型)。
軟體:matlab,gauss均可,只是需要相關檢驗的時候,需要自己編程

『貳』 arcgis地理加權回歸沒有系數

直接查看分析後得到的屬性表。
如果回歸沒有系數的話,你可以直接查看分析後得到的屬性表,屬性表中有各個變數的系數以及其他系數所構成的表。
地理加權回歸是若干空間回歸技術中的一種,越來越多地用於地理及其他學科。通過使回歸方程適合數據集中的每個要素,GWR可為您要嘗試了解/預測的變數或過程提供局部模型。

『叄』 地理加權回歸需要考慮多重共線性嗎

需要。1、描述

執行「地理加權回歸 (GWR)」,這是一種用於建模空間變化關系的線性回歸的局部形式。

2、一圖讀懂GWR

GWR 為局部回歸模型。系數可以變化。

3、使用

GWR 為數據集中的各要素構建了一個獨立的方程,用於將各目標要素的帶寬范圍內的要素的因變數和解釋變數進行合並。帶寬的形狀和范圍取決於用戶輸入的核類型、帶寬方法、距離以及相鄰要素數等參數,但也存在一條限制:如果相鄰要素的數目超過 1000,則僅將最相鄰的 1000 個要素合並到各個局部方程中。

GWR 通常被要求用於處理包含數百個要素的數據集,以便獲得最佳結果, GWR 不適用於小型數據集。而且,此工具不能用於處理多點數據。

註:GWR 工具會生成各種輸出。右鍵單擊結果窗口中的消息條目,然後選擇視圖,將顯示 GWR 工具的執行匯總報告。

此外,GWR 工具也會生成一個輸出要素類和一個包含了工具執行匯總報告診斷值的表。會自動將此表以輸出要素類名加上 _supp 作為後綴的形式進行命名。輸出要素類會自動添加至內容列表中,並會對模型殘差應用熱/冷渲染方案。在解釋 GWR 結果中提供了有關各輸出的完整說明。_supp 文件的創建位置始終與輸出要素類相同,除非輸出要素類被創建在一個要素數據集內。當輸出要素類位於要素數據集內時,_supp 表則會創建在該要素數據集所在的地理資料庫中。

建議您使用投影數據。這一點在距離成為分析的一部分時尤其重要,因為在您針對核類型選擇固定時,會對 GWR 使用投影數據。建議您使用投影坐標系(而非地理坐標系)對數據進行投影。

由 GWR 工具執行的某些計算會利用多個 CPU 以提高性能,並會自動使用多達 8 條線程/CPU 進行處理。

應該始終從普通最小二乘法 (OLS) 回歸開始回歸分析。首先獲得一個正確指定的 OLS 模型,然後使用同樣的解釋變數運行 GWR(不包括表示不同空間組織的任何「啞元」解釋變數)。

因變數和解釋變數應該是包含各種值的數值型欄位。線性回歸方法(如 GWR)不適於預測二進制結果(例如,因變數的所有值不是 1 就是 0)。

如果在 GWR 模型中包含名目數據或分類數據,則需謹慎操作。在類別出現空間聚類的地方,存在局部多重共線性的風險。GWR 輸出中包含的條件數指明了局部共線性何時會導致問題(條件數小於零、大於 30 或設置為「空」)。存在局部多重共線性的結果是不穩定的。

請勿使用人工解釋變數來表示 GWR 模型中的不同空間組織(例如,向城鎮中心外的人口普查區賦予值 1,而向其他區域賦予值 0)。由於 GWR 允許解釋變數系數發生變化,這些空間組織解釋變數並不必要,並且如果包含了這些變數,則會產生局部多重共線性問題。

要更好地了解解釋變數系數當中的區域變化,請檢查由 GWR 創建的可選柵格系數表面。將在系數柵格工作空間中創建這些柵格表面。對於面數據,您可以對輸出要素類中的每個系數欄位使用漸變色彩或由冷色到暖色的渲染以檢查整個研究區域的更改。

通過提供預測位置要素類(通常,此要素類與輸入要素類相同)、預測解釋變數和輸出預測要素類,您可以使用 GWR 進行預測。在用來校正回歸模型的欄位(解釋變數欄位的輸入值)與用來預測的欄位(預測解釋變數欄位的輸入值)之間必須是一對一的對應關系。這些變數的順序必須相同。例如,假設您當前正針對交通事故構建一個有關速度限制、道路條件、車道數量以及汽車數量的函數。通過創建一個具有修正後的速度限制和道路條件的新變數,您可以預測更改速度限制或改善道路狀況可能對交通事故產生的影響。現有變數將用於校正回歸模型,並用作解釋變數的參數。修正的變數將用於預測,並可作為預測解釋變數。

如果提供了預測位置要素類,但未指定預測解釋變數,則僅使用各位置的已計算系數創建輸出預測要素類(不進行任何預測)。

如果回歸模型缺少關鍵解釋變數,則會導致回歸模型的指定錯誤。如果回歸殘差的空間自相關具有統計學上的顯著性,或者在一個或多個解釋變數的系數當中發生了非期望的空間變化,則表明錯誤指定了您的模型。您應該盡一切努力(例如,通過 OLS 殘差分析和 GWR 系數變化分析)來查找這些丟失的關鍵變數,以便在模型中包含這些變數。

時刻關註解釋變數的不穩定性是否會出現問題。例如,假設您正將特殊植物種類的密度構建為若干變數(包括 ASPECT)的函數。如果發現在整個研究區域中 ASPECT 變數的系數發生了更改,則可能要查看是否有缺少關鍵解釋變數的跡象(例如,可能存在大量競爭植被)。應該盡一切努力將所有關鍵解釋變數包含到回歸模型中。

為帶寬方法參數選擇 AICc(更正後的 Akaike 信息准則)或 CV(交叉驗證)時,GWR 將查找最佳距離(對於固定核)或最佳相鄰要素的數目(對於自適應核)。但是,局部多重共線性問題將會阻止 AICc 和 CV 帶寬方法解析最佳距離/相鄰要素的數目。如果出現表示模型設計存在嚴重問題的錯誤,則請嘗試指定特殊距離或相鄰要素的數目, 然後檢查輸出要素類中的條件數,以查看哪些要素與局部共線性問題相關聯。

嚴重模型設計錯誤或用於表明局部方程未包含足夠多相鄰要素的錯誤,通常表示回歸存在全局或局部多重共線性問題。要確定出現問題的位置,請使用 OLS 運行模型,然後檢查每個解釋變數的 VIF 值。如果某些 VIF 值較大(例如,大於 7.5),則全局多重共線性會阻止 GWR 解決問題。但是,更有可能是局部多重共線性所導致的問題。請嘗試為各解釋變數創建一個專題地圖。如果在地圖上出現相同值的空間聚類,考慮將這些變數從模型中移除,或將這些變數與其他解釋變數合並以便加大值的變化性。例如,如果要對房屋價格進行建模且具有卧室和浴室兩個變數,則可能需要將其合並以加大值的變化性,或將其表示為浴室/卧室的建築面積。在構造 GWR 模型時,要避免使用空間組織啞元變數、空間聚類名目或數值變數或者幾乎不可能具有值的變數。

GWR 是一種線性模型,其前提條件與 OLS 相同。要確保正確指定您的 GWR 模型,請參閱回歸分析基礎知識中的回歸模型失效方式部分。

『肆』 要進行地理加權回歸分析的數據應該滿足什麼條件

本帖最後由區域經濟愛好者於2013-11-2313:00編輯第一,GWR缺少統一的統計推斷框架。不同區位回歸系數之間的依賴性也沒有在模型中說明。因此,GWR中標准誤是近似的。這是由於不同區位參數估計中,重復使用了數據;還因為應用這些數據線估計了帶寬,然後估計回歸系數。我對這段話只是明白一部分,請大家進一步解釋一下。謝謝。第二,GWR計算每個樣本點的回歸系數。如果樣本數很大,那將導致非常復雜的結果。如何利用並解析這些結果,歸納出一定的規律呢?另一方面,如果樣本很小,又怎麼進行GWR估計呢?所以樣本大了,不容易找規律;樣本小了,又沒法進行回歸分析。這是一個矛盾體。怎麼?

『伍』 求助用matlab怎麼做地理加權回歸

地理加權回歸(Geographically Weighted Regression,簡稱GWR),由英國Newcastle大學地理統計學家A.S Fortheringham及其同事基於空間變系數回歸模型並利用局部多項式光滑的思想提出的模型。模型公式如下:
其中(yi;xi1,xi2,…,xip)為在地理位置(ui,vi)處的因變數y和自變數x1,x2,…,xp的觀測值(i=1,2,…,n).βj(ui,vi)(j=0,1,…,p)為觀測點(ui,vi)處的未知參數,它是(ui,vi)的未知函,εi(i=1,2,…,n)為獨立同分布的隨機誤差,通常假定其服從N(0,σ2).

『陸』 關於地理加權回歸模型的問題,有沒有懂統計學的大神解釋一下。

s://blog.csdn.net/allenlu2008/article/details/72870882
地理加權回歸分析完成之後,與OLS不同的是會默認生成

『柒』 回歸分析的公式中,Xi、Yi指的是什麼怎麼計算

Xi指的是第i個數據中的X值,Yi指的是第i個數據中的Y值。

Xi中的i=1,2,3,4……i只是一個代號,它可以等於1,2,3等等的值,即X1,X2,X3,i只是X下標的一個總稱。

例如:有四組數據(X,Y):(1,2)、(3,4)、(5,6)、(7,8)

當i=1時,即Xi=X1,X1=1,X1就是第一組數據中的X值為1。

同理,X2=3,X3=5,X4=7。



(7)地理加權回歸系數是什麼擴展閱讀

回歸分析估計了兩個或多個變數之間的關系。

比如,在當前的經濟條件下,要估計一家公司的銷售額增長情況。現在,有公司最新的數據,這些數據顯示出銷售額增長大約是經濟增長的2.5倍。那麼使用回歸分析,就可以根據當前和過去的信息來預測未來公司的銷售情況。

使用回歸分析的好處良多。具體如下:

1、它表明自變數和因變數之間的顯著關系;

2、它表明多個自變數對一個因變數的影響強度。

回歸分析也允許去比較那些衡量不同尺度的變數之間的相互影響,如價格變動與促銷活動數量之間聯系。這些有利於幫助市場研究人員,數據分析人員以及數據科學家排除並估計出一組最佳的變數,用來構建預測模型。

在所有的回歸方法中,OLS最為著名,也是所有空間回歸分析的正確起點。它可為嘗試了解或預測(早逝/降雨)的變數或過程提供一個全局模型,而且,它可創建一個回歸方程來表示該過程。

地理加權回歸 (GWR) 是若干空間回歸方法中的一種,被越來越多地用於地理及其他學科。通過對數據集中的各要素擬合回歸方程,GWR為要嘗試了解/預測的變數或過程提供了一個局部模型。若使用得當,這些方法可提供強大且可靠的統計數據,以對線性關系進行檢查和估計。

『捌』 地理加權回歸

這些都是統計分布的特徵參數。min就是最小值,max是最大值,mean是平均值,median是中位數,1st quantile是第一分位數,就是排名前25%對應的樣本值,3nd quantile是第三分位數,也就是前75%對應的樣本值。

閱讀全文

與地理加權回歸系數是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:722
乙酸乙酯化學式怎麼算 瀏覽:1388
沈陽初中的數學是什麼版本的 瀏覽:1334
華為手機家人共享如何查看地理位置 瀏覽:1026
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:866
數學c什麼意思是什麼意思是什麼 瀏覽:1389
中考初中地理如何補 瀏覽:1277
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:684
數學奧數卡怎麼辦 瀏覽:1367
如何回答地理是什麼 瀏覽:1004
win7如何刪除電腦文件瀏覽歷史 瀏覽:1037
大學物理實驗干什麼用的到 瀏覽:1465
二年級上冊數學框框怎麼填 瀏覽:1681
西安瑞禧生物科技有限公司怎麼樣 瀏覽:906
武大的分析化學怎麼樣 瀏覽:1230
ige電化學發光偏高怎麼辦 瀏覽:1319
學而思初中英語和語文怎麼樣 瀏覽:1626
下列哪個水飛薊素化學結構 瀏覽:1408
化學理學哪些專業好 瀏覽:1471
數學中的棱的意思是什麼 瀏覽:1036