1. python map函數怎麼用啊!
1、對可迭代函數'iterable'中的每一個元素應用『function』方法,將結果作為list返回。
來個例子:
>>> def add100(x):
... return x+100
...
>>> hh = [11,22,33]
>>> map(add100,hh)
[111, 122, 133]
就像文檔中說的:對hh中的元素做了add100,返回了結果的list。
2、如果給出了額外的可迭代參數,則對每個可迭代參數中的元素『並行』的應用『function』。(翻譯的不好,這里的關鍵是『並行』)
>>> def abc(a, b, c):
... return a*10000 + b*100 + c
...
>>> list1 = [11,22,33]
>>> list2 = [44,55,66]
>>> list3 = [77,88,99]
>>> map(abc,list1,list2,list3)
[114477, 225588, 336699]
看到並行的效果了吧!在每個list中,取出了下標相同的元素,執行了abc()。
3、如果'function'給出的是『None』,自動假定一個『identity』函數(這個『identity』不知道怎麼解釋,看例子吧)
>>> list1 = [11,22,33]
>>> map(None,list1)
[11, 22, 33]
>>> list1 = [11,22,33]
>>> list2 = [44,55,66]
>>> list3 = [77,88,99]
>>> map(None,list1,list2,list3)
[(11, 44, 77), (22, 55, 88), (33, 66, 99)]
2. 求教Python編程中 map
_tabkeys = map(int,tabkeys[1:_len])
相當於_tabkeys[0] = int(tabkeys[1])
.... _tabkeys[i] = int(tabkeys[i+1])
這不正是你要的?
例子:
>>> tabkeys=['1','2','3']
>>> _len = len(tabkeys)
>>> _tabkeys = map(int,tabkeys[1:_len])
>>> _tabkeys
[2, 3]
>>> _tabkeys[0]
2
>>> tabkeys[1]
'2'
>>>
3. python怎麼做世界地圖數據
使用方法: 把代碼保存成bmap.py python bmap.py 或 python bmap.py 服飾廠 運行後會自動採集網路地圖中所有的結果,保存為以tab分割的txt文件,方便導入各種資料庫。
4. python basemap畫地圖急求救
可以看一下hiredis庫的介面設計,hiredis中的Reader有兩個介面,分別是feed和gets,feed每次送入一部分數據,不需要保證是正確分片的;
gets則返回已經得到的完整的結果,如果返回False,表示已經沒有新的結果。基本上所有的TCP的socket編程都是遵循這樣的方法:
讀入新數據;判斷有沒有完整的新消息;處理新消息,或者等待更多數據。
5. python中map怎麼用
他有那個實用的教學視頻的,你可以看那個教學視頻,看了之後就會做了。g
6. python中map函數
map在python2返回list,在python3返回iterator.
如果想在python3得到可以反復重用的list,只要把iterator轉成list即可:
lst_result=list(map(func,items))
7. map函數的用法python
map函數的用法如下:
map(func, lst) ,將傳⼊的函數變數 func 作⽤到 lst 變數的每個元素中,並將結果組成新的列表 (Python2)/ 迭代器(Python3) 返回。
注意:
map()返回的是一個迭代器,直接列印map()的結果是返回的一個對象。
map函數示例代碼:
lst = ['1', '2', '3', '4', '5', '6']
print(lst)
lst_int = map(lambda x: int(x), lst)
# print(list(lst_int))
for i in lst_int:
print(i, end=' ')
print()
print(list(lst_int))
8. 請問怎麼用Python畫柵格地圖,類似下面這樣的圖,激光會返回障礙物的位置信息
你用的是激光雷達吧。 雷達應該本身可以形成周圍物體的反饋。
所以需要一個圖像識別演算法識別出障礙物是什麼。然後標志出來。
這個沒有做過。不過都是現成的演算法。 找一找就可以找到。
如果沒有找到可以按下面的思路去做:
雷達應該可以返回目標物的距離,以及反射強度。可以使用PIL,製作一個IMAGE。根據距離角度計算出點的位置,根據反射強度計算出它的灰度值。0-255的范圍。
下面是計算障礙物。 通常可以簡化演算法。 比如連續灰度值過10且超過2-3個像素則為目標障礙物。還可以加上距離判斷。比如距離15厘米以內的才算是障礙物。
另外灰度值與范圍可以做一個判斷矩陣。低灰度值。
有了障礙物,只需要計算圖像中心點。然後在周圍畫個矩形。
最後把IMAGE畫出來。可以用PIL,也可以用opencv的函數。
9. 如何用Python繪制JS地圖
Folium是建立在Python生態系統的數據整理(Datawrangling)能力和Leaflet.js庫的映射能力之上的開源庫。用Python處理數據,然後用Folium將它在Leaflet地圖上進行可視化。
概念
Folium能夠將通過Python處理後的數據輕松地在互動式的Leaflet地圖上進行可視化展示。它不單單可以在地圖上展示數據的分布圖,還可以使用Vincent/Vega在地圖上加以標記。
這個開源庫中有許多來自OpenStreetMap、MapQuest Open、MapQuestOpen
Aerial、Mapbox和Stamen的內建地圖元件,而且支持使用Mapbox或Cloudmade的API密鑰來定製個性化的地圖元件。
Folium支持GeoJSON和TopoJSON兩種文件格式的疊加,也可以將數據連接到這兩種文件格式的疊加層,最後可使用color-brewer
配色方案創建分布圖。
安裝
安裝folium包
開始創建地圖
創建底圖,傳入起始坐標到Folium地圖中:
importfolium
map_osm= folium.Map(location=[45.5236, -122.6750]) #輸入坐標
map_osm.create_map(path='osm.html')
Folium默認使用OpenStreetMap元件,但是Stamen Terrain, Stamen Toner, Mapbox Bright 和MapboxControl空間元件是內置的:
#輸入位置,tiles,縮放比例
stamen =folium.Map(location=[45.5236, -122.6750], tiles='Stamen Toner',zoom_start=13)
stamen.create_map(path='stamen_toner.html')#保存圖片
Folium也支持Cloudmade 和 Mapbox的個性化定製地圖元件,只需簡單地傳入API_key :
custom =folium.Map(location=[45.5236, -122.6750], tiles='Mapbox',
API_key='wrobstory.map-12345678')
最後,Folium支持傳入任何與Leaflet.js兼容的個性化地圖元件:
tileset= r'http://{s}.tiles.yourtiles.com/{z}/{x}/{y}.png'
map =folium.Map(location=[45.372, -121.6972], zoom_start=12,
tiles=tileset, attr='My DataAttribution')
地圖標記
Folium支持多種標記類型的繪制,下面從一個簡單的Leaflet類型的位置標記彈出文本開始:
map_1 =folium.Map(location=[45.372, -121.6972], zoom_start=12,
tiles='Stamen Terrain')
map_1.simple_marker([45.3288,-121.6625], popup='Mt. Hood Meadows')#文字標記
map_1.simple_marker([45.3311,-121.7113], popup='Timberline Lodge')
map_1.create_map(path='mthood.html')
Folium支持多種顏色和標記圖標類型:
map_1 =folium.Map(location=[45.372, -121.6972], zoom_start=12,tiles='Stamen Terrain')
map_1.simple_marker([45.3288,-121.6625], popup='Mt. Hood Meadows',marker_icon='cloud') #標記圖標類型為雲
map_1.simple_marker([45.3311,-121.7113], popup='Timberline Lodge',marker_color='green') #標記顏色為綠色
map_1.simple_marker([45.3300,-121.6823], popup='Some OtherLocation',marker_color='red',marker_icon='info-sign')
#標記顏色為紅色,標記圖標為「info-sign」)
map_1.create_map(path='iconTest.html')
Folium也支持使用個性化的尺寸和顏色進行圓形標記:
map_2 =folium.Map(location=[45.5236, -122.6750], tiles='Stamen Toner',
zoom_start=13)
map_2.simple_marker(location=[45.5244,-122.6699], popup='The Waterfront')
簡單樹葉類型標記
map_2.circle_marker(location=[45.5215,-122.6261], radius=500,
popup='Laurelhurst Park',line_color='#3186cc',
fill_color='#3186cc')#圓形標記
map_2.create_map(path='portland.html')
Folium有一個簡便的功能可以使經/緯度懸浮於地圖上:
map_3 =folium.Map(location=[46.1991, -122.1889], tiles='Stamen Terrain',zoom_start=13)
map_3.lat_lng_popover()
map_3.create_map(path='sthelens.html')
Click-for-marker功能允許標記動態放置:
map_4 =folium.Map(location=[46.8527, -121.7649], tiles='Stamen Terrain',zoom_start=13)
map_4.simple_marker(location=[46.8354,-121.7325], popup='Camp Muir')
map_4.click_for_marker(popup='Waypoint')
map_4.create_map(path='mtrainier.html')
Folium也支持來自Leaflet-DVF的Polygon(多邊形)標記集:
map_5 =folium.Map(location=[45.5236, -122.6750], zoom_start=13)
map_5.polygon_marker(location=[45.5012,-122.6655], popup='Ross Island Bridge',fill_color='#132b5e', num_sides=3,radius=10)#三邊形標記
map_5.polygon_marker(location=[45.5132,-122.6708], popup='Hawthorne Bridge',fill_color='#45647d', num_sides=4,radius=10)#四邊形標記
map_5.polygon_marker(location=[45.5275,-122.6692], popup='Steel Bridge',fill_color='#769d96', num_sides=6, radius=10)#四邊形標記
map_5.polygon_marker(location=[45.5318,-122.6745], popup='Broadway Bridge',fill_color='#769d96', num_sides=8,radius=10) #八邊形標記
map_5.create_map(path='bridges.html')
Vincent/Vega標記
Folium能夠使用vincent 進行任何類型標記,並懸浮在地圖上。
buoy_map= folium.Map(location=[46.3014, -123.7390], zoom_start=7,
tiles='StamenTerrain')
buoy_map.polygon_marker(location=[47.3489,-124.708], fill_color='#43d9de',radius=12, popup=(vis1, 'vis1.json'))
buoy_map.polygon_marker(location=[44.639,-124.5339], fill_color='#43d9de',radius=12, popup=(vis2, 'vis2.json'))
buoy_map.polygon_marker(location=[46.216,-124.1280], fill_color='#43d9de',radius=12, popup=(vis3, 'vis3.json'))
GeoJSON/TopoJSON層疊加
GeoJSON 和TopoJSON層都可以導入到地圖,不同的層可以在同一張地圖上可視化出來:
geo_path= r'data/antarctic_ice_edge.json'
topo_path= r'data/antarctic_ice_shelf_topo.json'
ice_map= folium.Map(location=[-59.1759, -11.6016],tiles='Mapbox Bright', zoom_start=2)
ice_map.geo_json(geo_path=geo_path)#導入geoJson層
ice_map.geo_json(geo_path=topo_path,topojson='objects.antarctic_ice_shelf')#導入Toposon層
ice_map.create_map(path='ice_map.html')
分布圖
Folium允許PandasDataFrames/Series類型和Geo/TopoJSON類型之間數據轉換。Color Brewer 顏色方案也是內建在這個庫,可以直接導入快速可視化不同的組合:
importfolium
importpandas as pd
state_geo= r'data/us-states.json'#地理位置文件
state_unemployment= r'data/US_Unemployment_Oct2012.csv'#美國失業率文件
state_data= pd.read_csv(state_unemployment)
#LetFolium determine the scale
map =folium.Map(location=[48, -102], zoom_start=3)
map.geo_json(geo_path=state_geo,data=state_data,
columns=['State', 'Unemployment'],
key_on='feature.id',
fill_color='YlGn',fill_opacity=0.7, line_opacity=0.2,
legend_name='Unemployment Rate(%)')
map.create_map(path='us_states.html')
基於D3閾值尺度,Folium在右上方創建圖例,通過分位數創建最佳猜測值,導入設定的閾值很簡單:
map.geo_json(geo_path=state_geo,data=state_data,
columns=['State', 'Unemployment'],
threshold_scale=[5, 6, 7, 8, 9,10],
key_on='feature.id',
fill_color='BuPu',fill_opacity=0.7, line_opacity=0.5,
legend_name='Unemployment Rate(%)',
reset=True)
map.create_map(path='us_states.html')
10. python中map函數的使用
map() 會根據提供的函數對指定序列做映射。
第一個參數 function 以參數序列中的每一個元素調用 function 函數,返回包含每次 function 函數返回值的新列表。