❶ 函數發展史
歷史表明,重要數學概念對數學發展的作用是不可估量的,函數概念對數學發展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助於我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發展,數學學習的巨大作用.
(一)
��馬克思曾經認為,函數概念來源於代數學中不定方程的研究.由於羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽.
��自哥白尼的天文學革命以後,運動就成了文藝復興時期科學家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉和公轉,那麼下降的物體為什麼不發生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什麼?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對於高度函數就是在某變化過程中有兩個變數X和Y,變數Y隨著變數X一起變化,而且依賴於X。如果變數X取某個特定的值,Y依確定的關系取相應的值,那麼稱Y是X的函數。這一要領是由法國數學家黎曼在19世紀提出來的,但是最早產生於德國的數學家菜布尼茨。他和牛頓是微積分的發明者。17世紀末,在他的文章中,首先使用了 「function" 一詞。翻譯成漢語的意思就是 「 函數。不過,它和我們今天使用的函數一詞的內涵並不一樣,它表示 」 冪 」 、 「 坐標 」 、 「 切線長 」 等概念。
直到18世紀,法國數學家達朗貝爾在進行研究中,給函數重新下了一個定義,他認為,所謂變數的函數,就是指由這些變數和常量所組成的解析表達式,即用解析式表達函數關系。後來瑞士的數學家歐拉又把函數的定義作了進一步的規范,他認為函數是能描畫出的一條曲線。我們常見到的一次函數的圖像、二次函數的圖像、正比例函數的圖像、反比例的圖像等都是用圖像法表示函數關系的。如果用達朗貝爾和歐拉的方法來表達函數關系,各自有它們的優點,但是如果作為函數的定義,還有欠缺。因為這兩種方法都還停留在表面現象上,而沒有提示出函數的本質來。
19世紀中期,法國數學家黎緊吸收了萊布尼茨、達朗貝爾和歐拉的成果,第一次准確地提出了函數的定義:如果某一個量依賴於另一個量,使後一個量變化時,前一個量也隨著變化,那麼就把前一個量叫做後一個量的函數。黎曼定義的最大特點在於它突出了就是之間的依賴、變化的關系,反映了函數概念的本質屬性。和射程的影響等問題,既是科學家的力圖解決的問題,也是軍事家要求解決的問題,函數概念就是從運動的研究中引申出的一個數學概念,這是函數概念的力學來源.
(二)
��早在函數概念尚未明確提出以前,數學家已經接觸並研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前後笛卡兒在他的解析幾何中,已經注意到了一個變數對於另一個變數的依賴關系,但由於當時尚未意識到需要提煉一般的函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義.
��1673年,萊布尼茲首次使用函數一詞表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量.由此可以看出,函數一詞最初的數學含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞「流量」來表示變數間的關系,直到1689年,瑞士數學家約翰·貝努里才在萊布尼茲函數概念的基礎上,對函數概念進行了明確定義,貝努里把變數x和常量按任何方式構成的量叫「x的函數」,表示為yx.
��當時,由於連接變數與常數的運算主要是算術運算、三角運算、指數運算和對數運算,所以後來歐拉就索性把用這些運算連接變數x和常數c而成的式子,取名為解析函數,還將它分成了「代數函數」與「超越函數」.
��18世紀中葉,由於研究弦振動問題,達朗貝爾與歐拉先後引出了「任意的函數」的說法.在解釋「任意的函數」概念的時候,達朗貝爾說是指「任意的解析式」,而歐拉則認為是「任意畫出的一條曲線」.現在看來這都是函數的表達方式,是函數概念的外延.
(三)
��函數概念缺乏科學的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術中有廣泛應用,但由於沒有函數的科學定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉向物理學.他在和W·威伯爾合作發明電報的過程中,做了許多關於磁的實驗工作,提出了「力與距離的平方成反比例」這個重要的理論,使得函數作為數學的一個獨立分支而出現了,實際的需要促使人們對函數的定義進一步研究.
��後來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當後一量變化時前一量也隨著變化,那麼第一個量稱為第二個量的函數.「這個定義雖然還沒有道出函數的本質,但卻把變化、運動注入到函數定義中去,是可喜的進步.」
��在函數概念發展史上,法國數學家富里埃的工作影響最大,富里埃深刻地揭示了函數的本質,主張函數不必局限於解析表達式.1822年,他在名著《熱的解析理論》中說,「通常,函數表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規律;他們以任何方式一個挨一個.」在該書中,他用一個三角級數和的形式表達了一個由不連續的「線」所給出的函數.更確切地說就是,任意一個以2π為周期函數,在〔-π,π〕區間內,可以由
�表示出,其中
��富里埃的研究,從根本上動搖了舊的關於函數概念的傳統思想,在當時的數學界引起了很大的震動.原來,在解析式和曲線之間並不存在不可逾越的鴻溝,級數把解析式和曲線溝通了,那種視函數為解析式的觀點終於成為揭示函數關系的巨大障礙.
��通過一場爭論,產生了羅巴切夫斯基和狄里克萊的函數定義.
��1834年,俄國數學家羅巴切夫斯基提出函數的定義:「x的函數是這樣的一個數,它對於每個x都有確定的值,並且隨著x一起變化.函數值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應值的方法.函數的這種依賴關系可以存在,但仍然是未知的.」這個定義建立了變數與函數之間的對應關系,是對函數概念的一個重大發展,因為「對應」是函數概念的一種本質屬性與核心部分.
��1837年,德國數學家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關系無關緊要,所以他的定義是:「如果對於x的每一值,y總有完全確定的值與之對應,則y是x的函數.」
��根據這個定義,即使像如下表述的,它仍然被說成是函數(狄里克萊函數):
f(x)= 1���(x為有理數),
0���(x為無理數).
��在這個函數中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數.
��狄里克萊的函數定義,出色地避免了以往函數定義中所有的關於依賴關系的描述,以完全清晰的方式為所有數學家無條件地接受.至此,我們已可以說,函數概念、函數的本質定義已經形成,這就是人們常說的經典函數定義.
(四)
��生產實踐和科學實驗的進一步發展,又引起函數概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現象.1930年量子力學問世了,在量子力學中需要用到一種新的函數——δ-函數,
即�ρ(x)= 0,x≠0,
∞,x=0.
且
��δ-函數的出現,引起了人們的激烈爭論.按照函數原來的定義,只允許數與數之間建立對應關系,而沒有把「∞」作為數.另外,對於自變數只有一個點不為零的函數,其積分值卻不等於零,這也是不可想像的.然而,δ-函數確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是
��P(0)=壓力/接觸面=1/0=∞.
��其餘點x≠0處,因無壓力,故無壓強,即�P(x)=0.另外,我們知道壓強函數的積分等於壓力,即
�函數概念就在這樣的歷史條件下能動地向前發展,產生了新的現代函數定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x).元素x稱為自變元,元素y稱為因變元.
��函數的現代定義與經典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發展,是數學發展道路上的重大轉折,近代的泛函分析可以作為這種轉折的標志,它研究的是一般集合上的函數關系.
��函數概念的定義經過二百多年來的錘煉、變革,形成了函數的現代定義,應該說已經相當完善了.不過數學的發展是無止境的,函數現代定義的形式並不意味著函數概念發展的歷史終結,近二十年來,數學家們又把函數歸結為一種更廣泛的概念—「關系」.
��設集合X、Y,我們定義X與Y的積集X×Y為
��X×Y={(x,y)|x∈X,y∈Y}.
��積集X×Y中的一子集R稱為X與Y的一個關系,若(x,y)∈R,則稱x與y有關系R,記為xRy.若(x,y)R,則稱x與y無關系.
��現設f是X與Y的關系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那麼稱f為X到Y的函數.在此定義中,已在形式上迴避了「對應」的術語,全部使用集合論的語言了.
��從以上函數概念發展的全過程中,我們體會到,聯系實際、聯系大量數學素材,研究、發掘、拓廣數學概念的內涵是何等重要.
參考資料:http://hi..com/lhw_cake
❷ 函數是什麼意思有哪些用途
函數的定義:給定一個數集A,假設其中的元素為x。現對A中的元素x施加對應法則f,記作f(x),得到另一數集B。假設B中的元素為y。則y與x之間的等量關系可以用y=f(x)表示。
我們把這個關系式就叫函數關系式,簡稱函數。函數概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函數關系的本質特徵。
復變函數論中用幾何方法來說明、解決問題的內容,一般叫做幾何函數論,復變函數可以通過共形映象理論為它的性質提供幾何說明。導數處處不是零的解析函數所實現的映象就都是共形映象,共形映象也叫做保角變換。共形映象在流體力學、空氣動力學、彈性理論、靜電場理論等方面都得到了廣泛的應用。
廣義解析函數的應用范圍很廣泛,不但應用在流體力學的研究方面,而且象薄殼理論這樣的固體力學部門也在應用。因此,自2002年來這方面的理論發展十分迅速。
(2)函數發展的歷史意義是什麼意思擴展閱讀:
函數的特性
(1)有界性。設函數f(x)在區間X上有定義,如果存在M>0,對於一切屬於區間X上的x,恆有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界。
(2)單調性。設函數f(x)的定義域為D,區間I包含於D。如果對於區間上任意兩點x1及x2,當x1<x2時,恆有f(x1)<f(x2),則稱函數f(x)在區間I上是單調遞增的。
如果對於區間I上任意兩點x1及x2,當x1<x2時,恆有f(x1)>f(x2),則稱函數f(x)在區間I上是單調遞減的。單調遞增和單調遞減的函數統稱為單調函數。
❸ 函數的發展歷程是怎麼樣的
函數概念的發展歷史1.早期函數概念——幾何觀念下的函數
十七世紀伽俐略(G.Galileo,意,1564-1642)在《兩門新科學》一書中,幾乎全部包含函數或稱為變數關系的這一概念,用文字和比例的語言表達函數的關系。1673年前後笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已注意到一個變數對另一個變數的依賴關系,但因當時尚未意識到要提煉函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函數的一般意義,大部分函數是被當作曲線來研究的。
1673年,萊布尼茲首次使用「function」 (函數)表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量。與此同時,牛頓在微積分的討論中,使用 「流量」來表示變數間的關系。
2.十八世紀函數概念──代數觀念下的函數
1718年約翰??貝努利(Bernoulli Johann,瑞,1667-1748)在萊布尼茲函數概念的基礎上對函數概念進行了定義:「由任一變數和常數的任一形式所構成的量。」他的意思是凡變數x和常量構成的式子都叫做x的函數,並強調函數要用公式來表示。
1755,歐拉(L.Euler,瑞士,1707-1783) 把函數定義為「如果某些變數,以某一種方式依賴於另一些變數,即當後面這些變數變化時,前面這些變數也隨著變化,我們把前面的變數稱為後面變數的函數。」
18世紀中葉歐拉(L.Euler,瑞,1707-1783)給出了定義:「一個變數的函數是由這個變數和一些數即常數以任何方式組成的解析表達式。」他把約翰??貝努利給出的函數定義稱為解析函數,並進一步把它區分為代數函數和超越函數,還考慮了「隨意函數」。不難看出,歐拉給出的函數定義比約翰??貝努利的定義更普遍、更具有廣泛意義。
3.十九世紀函數概念──對應關系下的函數
1821年,柯西(Cauchy,法,1789-1857) 從定義變數起給出了定義:「在某些變數間存在著一定的關系,當一經給定其中某一變數的值,其他變數的值可隨著而確定時,則將最初的變數叫自變數,其他各變數叫做函數。」在柯西的定義中,首先出現了自變數一詞,同時指出對函數來說不一定要有解析表達式。不過他仍然認為函數關系可以用多個解析式來表示,這是一個很大的局限。
1822年傅里葉(Fourier,法國,1768——1830)發現某些函數也已用曲線表示,也可以用一個式子表示,或用多個式子表示,從而結束了函數概念是否以唯一一個式子表示的爭論,把對函數的認識又推進了一個新層次。
1837年狄利克雷(Dirichlet,德,1805-1859) 突破了這一局限,認為怎樣去建立x與y之間的關系無關緊要,他拓廣了函數概念,指出:「對於在某區間上的每一個確定的x值,y都有一個或多個確定的值,那麼y叫做x的函數。」這個定義避免了函數定義中對依賴關系的描述,以清晰的方式被所有數學家接受。這就是人們常說的經典函數定義。
等到康托(Cantor,德,1845-1918)創立的集合論在數學中佔有重要地位之後,維布倫(Veblen,美,1880-1960)用「集合」和「對應」的概念給出了近代函數定義,通過集合概念把函數的對應關系、定義域及值域進一步具體化了,且打破了「變數是數」的極限,變數可以是數,也可以是其它對象。
4.現代函數概念──集合論下的函數
1914年豪斯道夫(F.Hausdorff)在《集合論綱要》中用不明確的概念「序偶」來定義函數,其避開了意義不明確的「變數」、「對應」概念。庫拉托夫斯基(Kuratowski)於1921年用集合概念來定義「序偶」使豪斯道夫的定義很嚴謹了。
1930 年新的現代函數定義為「若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x)。元素x稱為自變元,元素y稱為因變元。」
術語函數,映射,對應,變換通常都有同一個意思。
但函數只表示數與數之間的對應關系,映射還可表示點與點之間,圖形之間等的對應關系。可以說函數包含於映射。當然,映射也只是一部分。 [編輯本段]冪函數冪函數的一般形式為y=x^a。
如果a取非零的有理數是比較容易理解的,不過初學者對於a取無理數,則不太容易理解,在我們的課程里,不要求掌握如何理解指數為無理數的問題,因為這涉及到實數連續統的極為深刻的知識。因此我們只要接受它作為一個已知事實即可。
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0 的所有實數。
在x大於0時,函數的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。
(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。
(6)顯然冪函數無界。 [編輯本段]高斯函數設x∈R , 用 [x]或int(x)表示不超過x 的最大整數,並用表示x的非負純小數,則 y= [x] 稱為高斯(Guass)函數,也叫取整函數。
任意一個實數都能寫成整數與非負純小數之和,即:x= [x] + (0≤<1) [編輯本段]復變函數復變函數是定義域為復數集合的函數。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
以復數作為自變數的函數就叫做復變函數,而與之相關的理論就是復變函數論。解析函數是復變函數中一類具有解析性質的函數,復變函數論主要就研究復數域上的解析函數,因此通常也稱復變函數論為解析函數論。
復變函數論的發展簡況
復變函數論產生於十八世紀。1774年,歐拉在他的一篇論文中考慮了由復變函數的積分導出的兩個方程。而比他更早時,法國數學家達朗貝爾在他的關於流體力學的論文中,就已經得到了它們。因此,後來人們提到這兩個方程,把它們叫做「達朗貝爾-歐拉方程」。到了十九世紀,上述兩個方程在柯西和黎曼研究流體力學時,作了更詳細的研究,所以這兩個方程也被叫做「柯西-黎曼條件」。
復變函數論的全面發展是在十九世紀,就像微積分的直接擴展統治了十八世紀的數學那樣,復變函數這個新的分支統治了十九世紀的數學。當時的數學家公認復變函數論是最豐饒的數學分支,並且稱為這個世紀的數學享受,也有人稱贊它是抽象科學中最和諧的理論之一。
為復變函數論的創建做了最早期工作的是歐拉、達朗貝爾,法國的拉普拉斯也隨後研究過復變函數的積分,他們都是創建這門學科的先驅。
後來為這門學科的發展作了大量奠基工作的要算是柯西、黎曼和德國數學家維爾斯特拉斯。二十世紀初,復變函數論又有了很大的進展,維爾斯特拉斯的學生,瑞典數學家列夫勒、法國數學家彭加勒、阿達瑪等都作了大量的研究工作,開拓了復變函數論更廣闊的研究領域,為這門學科的發展做出了貢獻。
復變函數論在應用方面,涉及的面很廣,有很多復雜的計算都是用它來解決的。比如物理學上有很多不同的穩定平面場,所謂場就是每點對應有物理量的一個區域,對它們的計算就是通過復變函數來解決的。
比如俄國的茹柯夫斯基在設計飛機的時候,就用復變函數論解決了飛機機翼的結構問題,他在運用復變函數論解決流體力學和航空力學方面的問題上也做出了貢獻。
復變函數論不但在其他學科得到了廣泛的應用,而且在數學領域的許多分支也都應用了它的理論。它已經深入到微分方程、積分方程、概率論和數論等學科,對它們的發展很有影響。
復變函數論的內容
復變函數論主要包括單值解析函數理論、黎曼曲面理論、幾何函數論、留數理論、廣義解析函數等方面的內容。
如果當函數的變數取某一定值的時候,函數就有一個唯一確定的值,那麼這個函數解就叫做單值解析函數,多項式就是這樣的函數。
復變函數也研究多值函數,黎曼曲面理論是研究多值函數的主要工具。由許多層面安放在一起而構成的一種曲面叫做黎曼曲面。利用這種曲面,可以使多值函數的單值枝和枝點概念在幾何上有非常直觀的表示和說明。對於某一個多值函數,如果能作出它的黎曼曲面,那麼,函數在離曼曲面上就變成單值函數。
黎曼曲面理論是復變函數域和幾何間的一座橋梁,能夠使我們把比較深奧的函數的解析性質和幾何聯系起來。近來,關於黎曼曲面的研究還對另一門數學分支拓撲學有比較大的影響,逐漸地趨向於討論它的拓撲性質。
復變函數論中用幾何方法來說明、解決問題的內容,一般叫做幾何函數論,復變函數可以通過共形映象理論為它的性質提供幾何說明。導數處處不是零的解析函數所實現的映像就都是共形映象,共形映像也叫做保角變換。共形映象在流體力學、空氣動力學、彈性理論、靜電場理論等方面都得到了廣泛的應用。
留數理論是復變函數論中一個重要的理論。留數也叫做殘數,它的定義比較復雜。應用留數理論對於復變函數積分的計算比起線積分計算方便。計算實變函數定積分,可以化為復變函數沿閉迴路曲線的積分後,再用留數基本定理化為被積分函數在閉合迴路曲線內部孤立奇點上求留數的計算,當奇點是極點的時候,計算更加簡潔。
把單值解析函數的一些條件適當地改變和補充,以滿足實際研究工作的需要,這種經過改變的解析函數叫做廣義解析函數。廣義解析函數所代表的幾何圖形的變化叫做擬保角變換。解析函數的一些基本性質,只要稍加改變後,同樣適用於廣義解析函數。
廣義解析函數的應用范圍很廣泛,不但應用在流體力學的研究方面,而且象薄殼理論這樣的固體力學部門也在應用。因此,近年來這方面的理論發展十分迅速。
從柯西算起,復變函數論已有170多年的歷史了。它以其完美的理論與精湛的技巧成為數學的一個重要組成部分。它曾經推動過一些學科的發展,並且常常作為一個有力的工具被應用在實際問題中,它的基礎內容已成為理工科很多專業的必修課程。現在,復變函數論中仍然有不少尚待研究的課題,所以它將繼續向前發展,並將取得更多應用。
upcase 字元型 使小寫英文字母變為大寫 字元型
downcase 字元型 使大寫英文字母變為小寫 字元型 [編輯本段]階梯函數形如階梯的具有無窮多個跳躍間斷點的函數. [編輯本段]反比例函數表達式為 y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。
反比例函數的其他形式:y=k/x=k·1/x=kx-1
反比例函數的特點:y=k/x→xy=k
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
反比例函數關於原點中心對稱,關於坐標軸角平分線軸對稱,另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣,即k的絕對值。
如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。
當 k >0時,反比例函數圖像經過一,三象限,因為在同一支反比例函數圖像上,y隨x的增大而減小所以又稱為減函數
當k <0時,反比例函數圖像經過二,四象限,因為在同一支反比例函數圖像上,y隨x的增大而增大所以又稱為增函數
倘若不在同一象限,則剛好相反。
由於反比例函數的自變數和因變數都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
知識點:
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2.對於雙曲線y= k/x,若在分母上加減任意一個實數m (即 y=k/x(x±m)m為常數),就相當於將雙曲線圖象向左或右平移m個單位。(加一個數時向左平移,減一個數時向右平移) [編輯本段]程序設計中的函數許多程序設計語言中,可以將一段經常需要使用的代碼封裝起來,在需要使用時可以直接調用,這就是程序中的函數。比如在C語言中:
int max(int x,int y)
{
return(x>y?x:y;);
}
就是一段比較兩數大小的函數,函數有參數與返回值。C++程序設計中的函數可以分為兩類:帶參數的函數和不帶參數的函數。這兩種參數的聲明、定義也不一樣。
帶有(一個)參數的函數的聲明:
類型名標示符+函數名+(類型標示符+參數)
{
}
不帶參數的函數的聲明:
void+函數名()
{
}
花括弧內為函數體。
帶參數的函數有返回值,不帶參數的沒有返回值。
C++中函數的調用:函數必須聲明後才可以被調用。調用格式為:函數名(實參)
調用時函數名後的小括弧中的實參必須和聲明函數時的函數括弧中的形參個數相同。
有返回值的函數可以進行計算,也可以做為右值進行賦值。
#include <iostream>
using namespace std;
int f1(int x, inty)
{int z;<br>return x+y;<br>}
void main()
{cout<<f1(50,660)<<endl<br>}
C語言中的部分函數
main(主函數)
max(求最大數的函數)
scanf(輸入函數)
printf(輸出函數)
❹ 什麼是函數函數的意義是什麼
在數學領域,函數是一種關系,這種關系使一個集合里的每一個元素對應到另一個(可能相同的)集合里的唯一元素。函數的概念對於數學和數量學的每一個分支來說都是最基礎的。 術語函數,映射,對應,變換通常都是同一個意思。 簡而言之,函數是將唯一的輸出值賦予每一輸入的「法則」。這一「法則」可以用函數表達式、數學關系,或者一個將輸入值與輸出值對應列出的簡單表格來表示。函數最重要的性質是其決定性,即同一輸入總是對應同一輸出(注意,反之未必成立)。從這種視角,可以將函數看作「機器」或者「黑盒」,它將有效的輸入值變換為唯一的輸出值。通常將輸入值稱作函數的參數,將輸出值稱作函數的值。 最常見的函數的參數和函數值都是數,其對應關系用函數式表示,函數值可以通過直接將參數值代入函數式得到。如下例, f(x) = x2 ,x 的平方即是函數值。 也可以將函數很簡單的推廣到與多個參量相關的情況。例如: g(x,y) = xy 有兩個參量x和y,以乘積xy為值。與前面不同,這一「法則」與兩個輸入相關。其實,可以將這兩個輸入看作一個有序對(x, y),記g為以這個有序對(x, y)作參數的函數,這個函數的值是xy。 科學研究中經常出現未知或不能給出表達式的函數。例如地球上不同時刻溫度的分布,這一函數以地點和時間為參量,以某一地點、某一時刻的溫度作為輸出。 函數的概念並不局限於數的計算,甚至也不局限於計算。函數的數學概念更為寬泛,而且不僅僅包括數之間的映射關系。函數將「定義域」(輸入集)與「對映域」(可能輸出集)聯系起來,使得定義域的每一個元素都唯一對應對映域中的一個元素。函數,如下文所述,被抽象定義為確定的數學關系。由於函數定義的一般性,函數概念對於幾乎所有的數學分支都是很基本的。 歷史函數這個數學名詞是萊布尼茲在1694年開始使用的,以描述曲線的一個相關量,如曲線的斜率或者曲線上的某一點。萊布尼茲所指的函數現在被稱作可導函數,數學家之外的普通人一般接觸到的函數即屬此類。對於可導函數可以討論它的極限和導數。此兩者描述了函數輸出值的變化同輸入值變化的關系,是微積分學的基礎。 1718年,約翰·貝努里(en:Johann Bernoulli)把函數定義為「一個變數的函數是指由這個變數和常量以任何一種方式組成的一種量。」1748年,約翰·貝努里的學生歐拉(Leonhard Euler)在《無窮分析引論》一書中說:「一個變數的函數是由該變數和一些數或[常量]]以任何一種方式構成的解析表達式」。例如f(x) = sin(x) + x3。1775年,歐拉在《微分學原理》一書中又提出了函數的一個定義:「如果某些量以如下方式依賴於另一些量,即當後者變化時,前者本身也發生變化,則稱前一些量是後一些量的函數。」 19世紀的數學家開始對數學的各個分支作規范整理。維爾斯特拉斯(Karl Weierstrass)提出將微積分學建立在算術,而不是幾何的基礎上,因而更趨向於歐拉的定義。 通過擴展函數的定義,數學家能夠對一些「奇怪」的數學對象進行研究,例如不可導的連續函數。這些函數曾經被認為只具有理論價值,遲至20世紀初時它們仍被視作「怪物」。稍後,人們發現這些函數在對如布朗運動之類的物理現象進行建模時有重要的作用。 到19世紀末,數學家開始嘗試利用集合論來規范數學。他們試圖將每一類數學對象定義為一個集合。狄利克雷(Johann Peter Gustav Lejeune Dirichlet)給出了現代正式的函數定義(參見下文#正式定義)。狄利克雷的定義將函數視作數學關系的特例。然而對於實際應用的情況,現代定義和歐拉定義的區別可以忽略不計。 正式定義從輸入值集合X 到可能的輸出值集合Y 的函數f(記作 f : X → Y)是X與Y的關系,滿足如下條件: f 是完全 的:對X 中任一元素x 都有集合Y 中的元素y 滿足x f y (x 與y 是f 相關的)。即,對每一個輸入值,Y 中都有至少一個與之對應的輸出值。 f 是多對一 的:若x f y 且x f z ,則y = z 。即,多個輸入可以映射到一個輸出,但一個輸入不能映射到多個輸出。 定義域中任一x 在對映域中唯一對應的y 記為f(x)。 比上面定義更簡明的表述如下:從X 映射到Y 的函數f是X與Y 的直積X × Y 的子集。X 中任一x 都與Y 中的y 唯一對應,且有序對(x, y)屬於f 。 X與Y的關系若滿足條件(1),則為多值函數。函數都是多值函數,但多值函數不都是函數。X與Y的關系若滿足條件(2),則為部分函數。函數都是部分函數,但部分函數不都是函數。除非特別指明,本網路全書中的「函數」總是指同時滿足以上兩個條件的關系。
❺ 函數的發展歷程
函數概念的發展歷史1.早期函數概念——幾何觀念下的函數
十七世紀伽俐略(G.Galileo,意,1564-1642)在《兩門新科學》一書中,幾乎全部包含函數或稱為變數關系的這一概念,用文字和比例的語言表達函數的關系。1673年前後笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已注意到一個變數對另一個變數的依賴關系,但因當時尚未意識到要提煉函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函數的一般意義,大部分函數是被當作曲線來研究的。
1673年,萊布尼茲首次使用「function」 (函數)表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量。與此同時,牛頓在微積分的討論中,使用 「流量」來表示變數間的關系。
2.十八世紀函數概念──代數觀念下的函數
1718年約翰�6�1貝努利(Bernoulli Johann,瑞,1667-1748)在萊布尼茲函數概念的基礎上對函數概念進行了定義:「由任一變數和常數的任一形式所構成的量。」他的意思是凡變數x和常量構成的式子都叫做x的函數,並強調函數要用公式來表示。
1755,歐拉(L.Euler,瑞士,1707-1783) 把函數定義為「如果某些變數,以某一種方式依賴於另一些變數,即當後面這些變數變化時,前面這些變數也隨著變化,我們把前面的變數稱為後面變數的函數。」
18世紀中葉歐拉(L.Euler,瑞,1707-1783)給出了定義:「一個變數的函數是由這個變數和一些數即常數以任何方式組成的解析表達式。」他把約翰�6�1貝努利給出的函數定義稱為解析函數,並進一步把它區分為代數函數和超越函數,還考慮了「隨意函數」。不難看出,歐拉給出的函數定義比約翰�6�1貝努利的定義更普遍、更具有廣泛意義。
3.十九世紀函數概念──對應關系下的函數
1821年,柯西(Cauchy,法,1789-1857) 從定義變數起給出了定義:「在某些變數間存在著一定的關系,當一經給定其中某一變數的值,其他變數的值可隨著而確定時,則將最初的變數叫自變數,其他各變數叫做函數。」在柯西的定義中,首先出現了自變數一詞,同時指出對函數來說不一定要有解析表達式。不過他仍然認為函數關系可以用多個解析式來表示,這是一個很大的局限。
1822年傅里葉(Fourier,法國,1768——1830)發現某些函數也已用曲線表示,也可以用一個式子表示,或用多個式子表示,從而結束了函數概念是否以唯一一個式子表示的爭論,把對函數的認識又推進了一個新層次。
1837年狄利克雷(Dirichlet,德,1805-1859) 突破了這一局限,認為怎樣去建立x與y之間的關系無關緊要,他拓廣了函數概念,指出:「對於在某區間上的每一個確定的x值,y都有一個或多個確定的值,那麼y叫做x的函數。」這個定義避免了函數定義中對依賴關系的描述,以清晰的方式被所有數學家接受。這就是人們常說的經典函數定義。
等到康托(Cantor,德,1845-1918)創立的集合論在數學中佔有重要地位之後,維布倫(Veblen,美,1880-1960)用「集合」和「對應」的概念給出了近代函數定義,通過集合概念把函數的對應關系、定義域及值域進一步具體化了,且打破了「變數是數」的極限,變數可以是數,也可以是其它對象。
4.現代函數概念──集合論下的函數
1914年豪斯道夫(F.Hausdorff)在《集合論綱要》中用不明確的概念「序偶」來定義函數,其避開了意義不明確的「變數」、「對應」概念。庫拉托夫斯基(Kuratowski)於1921年用集合概念來定義「序偶」使豪斯道夫的定義很嚴謹了。
1930 年新的現代函數定義為「若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x)。元素x稱為自變元,元素y稱為因變元。」
術語函數,映射,對應,變換通常都有同一個意思。
但函數只表示數與數之間的對應關系,映射還可表示點與點之間,圖形之間等的對應關系。可以說函數包含於映射。當然,映射也只是一部分。 [編輯本段]冪函數冪函數的一般形式為y=x^a。
如果a取非零的有理數是比較容易理解的,不過初學者對於a取無理數,則不太容易理解,在我們的課程里,不要求掌握如何理解指數為無理數的問題,因為這涉及到實數連續統的極為深刻的知識。因此我們只要接受它作為一個已知事實即可。
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0 的所有實數。
在x大於0時,函數的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。
(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。
(6)顯然冪函數無界。 [編輯本段]高斯函數設x∈R , 用 [x]或int(x)表示不超過x 的最大整數,並用表示x的非負純小數,則 y= [x] 稱為高斯(Guass)函數,也叫取整函數。
任意一個實數都能寫成整數與非負純小數之和,即:x= [x] + (0≤<1) [編輯本段]復變函數復變函數是定義域為復數集合的函數。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
以復數作為自變數的函數就叫做復變函數,而與之相關的理論就是復變函數論。解析函數是復變函數中一類具有解析性質的函數,復變函數論主要就研究復數域上的解析函數,因此通常也稱復變函數論為解析函數論。
復變函數論的發展簡況
復變函數論產生於十八世紀。1774年,歐拉在他的一篇論文中考慮了由復變函數的積分導出的兩個方程。而比他更早時,法國數學家達朗貝爾在他的關於流體力學的論文中,就已經得到了它們。因此,後來人們提到這兩個方程,把它們叫做「達朗貝爾-歐拉方程」。到了十九世紀,上述兩個方程在柯西和黎曼研究流體力學時,作了更詳細的研究,所以這兩個方程也被叫做「柯西-黎曼條件」。
復變函數論的全面發展是在十九世紀,就像微積分的直接擴展統治了十八世紀的數學那樣,復變函數這個新的分支統治了十九世紀的數學。當時的數學家公認復變函數論是最豐饒的數學分支,並且稱為這個世紀的數學享受,也有人稱贊它是抽象科學中最和諧的理論之一。
為復變函數論的創建做了最早期工作的是歐拉、達朗貝爾,法國的拉普拉斯也隨後研究過復變函數的積分,他們都是創建這門學科的先驅。
後來為這門學科的發展作了大量奠基工作的要算是柯西、黎曼和德國數學家維爾斯特拉斯。二十世紀初,復變函數論又有了很大的進展,維爾斯特拉斯的學生,瑞典數學家列夫勒、法國數學家彭加勒、阿達瑪等都作了大量的研究工作,開拓了復變函數論更廣闊的研究領域,為這門學科的發展做出了貢獻。
復變函數論在應用方面,涉及的面很廣,有很多復雜的計算都是用它來解決的。比如物理學上有很多不同的穩定平面場,所謂場就是每點對應有物理量的一個區域,對它們的計算就是通過復變函數來解決的。
比如俄國的茹柯夫斯基在設計飛機的時候,就用復變函數論解決了飛機機翼的結構問題,他在運用復變函數論解決流體力學和航空力學方面的問題上也做出了貢獻。
復變函數論不但在其他學科得到了廣泛的應用,而且在數學領域的許多分支也都應用了它的理論。它已經深入到微分方程、積分方程、概率論和數論等學科,對它們的發展很有影響。
復變函數論的內容
復變函數論主要包括單值解析函數理論、黎曼曲面理論、幾何函數論、留數理論、廣義解析函數等方面的內容。
如果當函數的變數取某一定值的時候,函數就有一個唯一確定的值,那麼這個函數解就叫做單值解析函數,多項式就是這樣的函數。
復變函數也研究多值函數,黎曼曲面理論是研究多值函數的主要工具。由許多層面安放在一起而構成的一種曲面叫做黎曼曲面。利用這種曲面,可以使多值函數的單值枝和枝點概念在幾何上有非常直觀的表示和說明。對於某一個多值函數,如果能作出它的黎曼曲面,那麼,函數在離曼曲面上就變成單值函數。
黎曼曲面理論是復變函數域和幾何間的一座橋梁,能夠使我們把比較深奧的函數的解析性質和幾何聯系起來。近來,關於黎曼曲面的研究還對另一門數學分支拓撲學有比較大的影響,逐漸地趨向於討論它的拓撲性質。
復變函數論中用幾何方法來說明、解決問題的內容,一般叫做幾何函數論,復變函數可以通過共形映象理論為它的性質提供幾何說明。導數處處不是零的解析函數所實現的映像就都是共形映象,共形映像也叫做保角變換。共形映象在流體力學、空氣動力學、彈性理論、靜電場理論等方面都得到了廣泛的應用。
留數理論是復變函數論中一個重要的理論。留數也叫做殘數,它的定義比較復雜。應用留數理論對於復變函數積分的計算比起線積分計算方便。計算實變函數定積分,可以化為復變函數沿閉迴路曲線的積分後,再用留數基本定理化為被積分函數在閉合迴路曲線內部孤立奇點上求留數的計算,當奇點是極點的時候,計算更加簡潔。
把單值解析函數的一些條件適當地改變和補充,以滿足實際研究工作的需要,這種經過改變的解析函數叫做廣義解析函數。廣義解析函數所代表的幾何圖形的變化叫做擬保角變換。解析函數的一些基本性質,只要稍加改變後,同樣適用於廣義解析函數。
廣義解析函數的應用范圍很廣泛,不但應用在流體力學的研究方面,而且象薄殼理論這樣的固體力學部門也在應用。因此,近年來這方面的理論發展十分迅速。
從柯西算起,復變函數論已有170多年的歷史了。它以其完美的理論與精湛的技巧成為數學的一個重要組成部分。它曾經推動過一些學科的發展,並且常常作為一個有力的工具被應用在實際問題中,它的基礎內容已成為理工科很多專業的必修課程。現在,復變函數論中仍然有不少尚待研究的課題,所以它將繼續向前發展,並將取得更多應用。
upcase 字元型 使小寫英文字母變為大寫 字元型
downcase 字元型 使大寫英文字母變為小寫 字元型 [編輯本段]階梯函數形如階梯的具有無窮多個跳躍間斷點的函數. [編輯本段]反比例函數表達式為 y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。
反比例函數的其他形式:y=k/x=k·1/x=kx-1
反比例函數的特點:y=k/x→xy=k
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
反比例函數關於原點中心對稱,關於坐標軸角平分線軸對稱,另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣,即k的絕對值。
如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。
當 k >0時,反比例函數圖像經過一,三象限,因為在同一支反比例函數圖像上,y隨x的增大而減小所以又稱為減函數
當k <0時,反比例函數圖像經過二,四象限,因為在同一支反比例函數圖像上,y隨x的增大而增大所以又稱為增函數
倘若不在同一象限,則剛好相反。
由於反比例函數的自變數和因變數都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
知識點:
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2.對於雙曲線y= k/x,若在分母上加減任意一個實數m (即 y=k/x(x±m)m為常數),就相當於將雙曲線圖象向左或右平移m個單位。(加一個數時向左平移,減一個數時向右平移) [編輯本段]程序設計中的函數許多程序設計語言中,可以將一段經常需要使用的代碼封裝起來,在需要使用時可以直接調用,這就是程序中的函數。比如在C語言中:
int max(int x,int y)
{
return(x>y?x:y;);
}
就是一段比較兩數大小的函數,函數有參數與返回值。C++程序設計中的函數可以分為兩類:帶參數的函數和不帶參數的函數。這兩種參數的聲明、定義也不一樣。
帶有(一個)參數的函數的聲明:
類型名標示符+函數名+(類型標示符+參數)
{
}
不帶參數的函數的聲明:
void+函數名()
{
}
花括弧內為函數體。
帶參數的函數有返回值,不帶參數的沒有返回值。
C++中函數的調用:函數必須聲明後才可以被調用。調用格式為:函數名(實參)
調用時函數名後的小括弧中的實參必須和聲明函數時的函數括弧中的形參個數相同。
有返回值的函數可以進行計算,也可以做為右值進行賦值。
#include <iostream>
using namespace std;
int f1(int x, inty)
{int z;<br>return x+y;<br>}
void main()
{cout<<f1(50,660)<<endl<br>}
C語言中的部分函數
main(主函數)
max(求最大數的函數)
scanf(輸入函數)
printf(輸出函數)
❻ 函數的意義是什麼
函數的傳統定義:
設在某變化過程中有兩個變數x、y,如果對於x在某一范圍內的每一個確定的值,y都有唯一確定的值與它對應,那麼就稱y是x的函數,x叫做自變數。
我們將自變數x取值的集合叫做函數的定義域,和自變數x對應的y的值叫做函數值,函數值的集合叫做函數的值域。
函數的近代定義:
設a,b都是非空的數的集合,f:x→y是從a到b的一個對應法則,那麼從a到b的映射f:a→b就叫做函數,記作y=f(x),其中x∈a,y∈b,原象集合a叫做函數f(x)的定義域,象集合c叫做函數f(x)的值域,顯然有cb。