A. 簡述物理學的發展簡史
物理學發展史與各年代成就物理學是研究物質運動和相互作用的規律的科學,是除數學外最基本的一門學科。
物理運動是自然界最普遍的一種現象。
因此物理學研究的對象和內容就是宇宙間各種物質的性質、存在狀態、各種物理運動形式及其轉化現象、物質的內部結構及這些內部結構的組成部分,物理領域的各種基本相互作用及其規律。由於一切物理現象都在時間、空間中表現出來和發生運動和轉化,所以物理學也要研究時間和空間的性質、聯系等。
進行物理學研究,首先是觀察各種客觀物理現象;或是進行試驗,通過變革研究對象以觀察因而產生的運動和轉化狀況中,找出規律;再從許多表象性的規律中,揭示基本規律,建立較為系統的理論。 物理學研究除了要依靠好的科學方法外,還要取決於認知工具。工具越先進,研究效率越高,成果越顯著。 物理學在發展過程中形成了一套完整的科學方法,它對其他學科的研究,乃至哲學發展,都有重要意義.
物理學發展史(從1638年至1962年)
公元1638年,義大利科學家伽利略的《兩種新科學》一書出版,書內載有斜面實驗的詳細描述。伽利略的動力學研究與1609~1618年間德國科學家開普勒根據天文觀測總結所得開普勒三定律,同為牛頓力學的基礎。
公元1643年,義大利科學家托利拆利作大氣壓實驗,發明水銀氣壓計。
公元1646年,法國科學家帕斯卡實驗驗證大氣壓的存在。
公元1654年,德國科學家格里開發明抽氣泵,獲得真空。
公元1662年,英國科學家波義耳實驗發現波義耳定律。十四年後,法國科學家馬里奧特也獨立的發現此定律。
公元1663年,格里開作馬德堡半球實驗。
公元1666年,英國科學家牛頓用三棱鏡作色散實驗。
公元1669年,巴塞林那斯發現光經過方解石有雙折射的現象。
公元1675年,牛頓作牛頓環實驗,這是一種光的干涉現象,但牛頓仍用光的微粒說解釋。
公元1752年,美國科學家富蘭克林作風箏實驗,引雷電到地面。
公元1767年,美國科學家普列斯特勒根據富蘭克林導體內不存在靜電荷的實驗,推得靜電力的平方反比定律。
公元1780年,義大利科學家加伐尼發現蛙腿筋肉收縮現象,認為是動物電所致。不過直到1791年他才發表這方面的論文。
公元1785年,法國科學家庫侖用他自己發明的扭秤,從實驗得靜電力的平方反比定律。在這以前,英國科學家米切爾已有過類似設計,並於1750年提出磁力的平方反比定律。
公元1787年,法國科學家查理發現了氣體膨脹的查理-蓋·呂薩克定律。蓋·呂薩克的研究發表於1802年。
公元1792年,伏打研究加伐尼現象,認為是兩種金屬接觸所致。
公元1798年,英國科學家卡文迪許用扭秤實驗測定萬有引力常數G。
公元1798年,美國科學家倫福德發表他的摩擦生熱的實驗,這些實驗事實是反對熱質說的重要依據。
公元1799年,英國科學家戴維做真空中的摩擦實驗,以證明熱是物體微粒的振動所致。
公元1800年,英國科學家赫休爾從太陽光譜的輻射熱效應發現紅外線。
公元1801年,德國科學家裡特爾從太陽光譜的化學作用,發現紫外線。
公元1801年,英國科學家托馬斯·楊用干涉法測光波波長。
公元1802年,英國科學家沃拉斯頓發現太陽光譜中有暗線。
公元1808年,法國科學家馬呂斯發現光的偏振現象。
公元1811年,英國科學家布儒斯特發現偏振光的布儒斯特定律。
公元1815年,德國科學家夫琅和費開始用分光鏡研究太陽光語中的暗線。
公元1819年,法國科學家杜隆與珀替發現克原子固體比熱是一常數,約為6卡/度·克原子,稱杜隆·珀替定律。
公元1820年,丹麥科學家奧斯特發現導線通電產生磁效應。
公元1820年,法國科學家畢奧和沙伐由實驗歸納出電流元的磁場定律。
公元1820年,法國科學家安培由實驗發現電流之間的相互作用力,1822年進一步研究電流之間的相互作用,提出安培作用力定律。
公元1821年,愛沙尼亞科學家塞貝克發現溫差電效應(塞貝克效應)。
公元1827年,英國科學家布朗發現懸浮在液體中的細微顆粒作不斷地雜亂無章運動,是分子運動論的有力證據。
公元1830年,諾比利發明溫差電堆。
公元1831年,法拉第發現電磁感應現象。
公元1834年,法國科學家珀耳帖發現電流可以致冷的珀耳帖效應。
公元1835年,美國科學家亨利發現自感,1842年發現電振盪放電。
公元1840年,英國科學家焦耳從電流的熱效應發現所產生的熱量與電流的平方、電阻及時間成正比,稱焦耳-楞茨定律(楞茨也獨立地發現了這一定律)。其後,焦耳先後於1843,1845,1847,1849直至1878年測量熱功當量,歷經四十年,共進行四百多次實驗。
公元1842年,法國科學家勒諾爾從實驗測定實際氣體的性質,發現與波義耳定律及蓋·呂薩克定律有偏離。
公元1843年,法拉第從實驗證明電荷守恆定律。
公元1845年,法拉第發現強磁場使光的偏振面旋轉,稱法拉第效應。
公元1849年,法國科學家斐索首次在地面上測光速。
公元1851年,法國科學家傅科做傅科擺實驗,證明地球自轉。
公元1852年,英國科學家焦耳與威廉·湯姆遜發現氣體焦耳-湯姆遜效應(氣體通過狹窄通道後突然膨脹引起溫度變化)。
公元1858年,德國科學家普呂克爾在放電管中發現陰極射線。
公元1859年,德國科學家基爾霍夫開創光譜分析,其後通過光譜分析發現銫、銣等新元素,他還發現發射光譜和吸收光譜之間的聯系,建立了輻射定律。
公元1866年,德國科學家昆特做昆特管實驗,用以測量氣體或固體中的聲速。
公元1869年,德國科學家希托夫用磁場使陰極射線偏轉。
公元1871年,英國科學家瓦爾萊發現陰極射線帶負電。
公元1875年,英國科學家克爾發現在強電場的作用下,某些各向同性的透明介質會變為各向異性,從而使光產生雙折射現象,稱克爾電光效應。
公元1876年,德國科學家哥爾德茨坦開始大量研究陽極射線的實驗,導致極墜射線的發現。
公元1879年,英國科學家克魯克斯開始一系列實驗,研究陰極射線。
公元1879年,奧地利科學家斯忒藩發現黑體輻射經驗公式。
公元1879年,美國科學家霍爾發現電流通過金屬時,在磁場作用下產生橫向電動勢的霍爾效應。
公元1880年,法國科學家居里兄弟發現晶體的壓電效應。
公元1881年,美國科學家邁克耳遜首次做以太漂移實驗,得到零結果。由此產生邁克耳遜干涉儀,靈敏度極高。
公元1885年,邁克耳遜與莫雷合作改進斐索流水中光速的測量。
公元1887年,邁克耳遜與莫雷再次做以太漂移實驗,又得零結果。
公元1887年,德國科學家赫茲作電磁波實驗,證實了英國科學家麥克斯韋的電磁場理論。同時,赫茲發現光電效應。
公元1890年,匈牙利科學家厄沃作實驗證明慣性質量與引力質量相等。
公元1893年,德國科學家勒納德研究陰極射線時,在射線管上裝一薄鋁窗,使陰極射線從管內穿出進入空氣,射程約l厘米,人稱勒納德射線。
公元1895年,P.居里發現居里點和居里定律。
公元1895年,德國科學家倫琴發現x射線。
公元1896年,法國科學家貝克勒爾發現放射性。
公元1896年,荷蘭科學家塞曼發現磁場
B. 物理學發展史及其重要事件
經典物理學發展史
古希臘時代的阿基米德已經在流體靜力學和固體的平衡方面取得輝煌成就,但當時將這些歸入應用數學,並沒有將他的成果特別是他的精確實驗和嚴格的數學論證方法汲入物理學中。從希臘、羅馬到漫長的中世紀,自然哲學始終是亞里士多德的一統天下。到了文藝復興時期,哥白尼、布魯諾、開普勒和伽利略不顧宗教的迫害,向舊傳統挑戰,其中伽利略把物理理論和定律建立在嚴格的實驗和科學的論證上,因此被尊稱為物理學或科學之父。
伽利略的成就是多方面的,僅就力學而言,他以物體從光滑斜面下滑將在另一斜面上升到同一高度,推論出如另一斜面的傾角極小,為達到同一高度,物體將以勻速運動趨於無限遠,從而得出如無外力作用,物體將運動不息的結論 。他精確地測定不同重量的物體以同一加速度沿光滑斜面下滑,並推論出物體自由下落時的加速度及其運動方程,駁倒了亞里士多德重物下落比輕物快的結論,並綜合水平方向的勻速運動和垂直地面方向的勻加速運動得出拋物線軌跡和45°的最大射程角,伽利略還分析「地常動移而人不知」,提出著名的「伽利略相對性原理」(中國的成書於1800年前的《尚書考靈曜》有類似結論)。但他對力和運動變化關系的分析仍是錯誤的。全面、正確地概括力和運動關系的是牛頓的三條運動定律,牛頓還把地面上的重力外推到月球和整個太陽系,建立了萬有引力定律。牛頓以上述的四條定律並運用他創造的「流數法」(即今微積分初步),解決了太陽系中的二體問題,推導出開普勒三定律,從理論上解決了地球上的潮汐問題。史稱牛頓是第一個綜合天上和地上的機械運動並取得偉大成就的物理學家。與此同時,幾何光學也有很大發展,在16世紀末或17世紀初,先後發明了顯微鏡和望遠鏡,開普勒、伽利略和牛頓都對望遠鏡作很大的改進。
法國在大革命的前後,人才輩出,以P.S.M.拉普拉斯為首的法國科學家(史稱拉普拉斯學派)將牛頓的力學理論發揚光大,把偏微分方程運用於天體力學,求出了太陽系內三體和多體問題的近似解,初步探討並解決了太陽系的起源和穩定性問題,使天體力學達到相當完善的境界。在牛頓和拉普拉斯的太陽系內,主宰天體運動的已經不是造物主,而是萬有引力,難怪拿破崙在聽完拉普拉斯的太陽系介紹後就問 :你把上帝放在什麼地位?無神論者拉普拉斯則直率地回答 :我不需要這個假設。
拉普拉斯學派還將力學規律廣泛用於剛體、流體和固體,加上W.R.哈密頓、G.G.斯托克斯等的共同努力,完善了分析力學,把經典力學推進到更高階段。該學派還將各種物理現象如熱、光、電、磁甚至化學作用都歸於粒子間的吸引和排斥,例如用光子受物質的排斥解釋反射,光微粒受物質的吸引解釋折射和衍射,用光子具有不同的外形以解釋偏振,以及用熱質粒子相互排斥來解釋熱膨脹、蒸發等等,都一度取得成功,從而使機械的唯物世界觀統治了數十年。正當這學派聲勢煊赫、如日中天時,受到英國物理學家T.楊和這個學派的後院法蘭西科學院及科學界的挑戰,J.B.V.傅里葉從熱傳導方面,T.楊、D.F.J.阿拉戈、A.-J.菲涅耳從光學方面,特別是光的波動說和粒子說(見光的二象性)的論爭在物理史上是一個重大的事件。為了駁倒微粒說,年輕的土木工程師菲涅耳在阿拉戈的支持下,製成了多種後以他的姓命名的干涉和衍射設備,並將光波的干涉性引入惠更斯的波陣面在介質中傳播的理論 ,形成惠更斯-菲涅耳原理,還大膽地提出光是橫波的假設,並用以研究各種光的偏振及偏振光的干涉,他創造了「菲涅耳波帶」法,完滿地說明了球面波的衍射,並假設光是以太的機械橫波解決了光在不同介質界面上反射、折射的強度和偏振問題,從而完成了經典的波動光學理論。菲涅耳還提出地球自轉使表面上的部分以太漂移的假設並給出曳引系數。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐測定光速在水中確比空氣中為小,從而確定了波動說的勝利,史稱這個實驗為光的判決性實驗。此後,光的波動說及以太論統治了19世紀的後半世紀,著名物理學家如法拉第、麥克斯韋、開爾文等都對以太論堅信不疑。另一方面,利用干涉儀內干涉條紋的移動,可以精確地測定長度、速度、曲率的極微細的變化;利用棱鏡和衍射光柵產生的光譜,可以確定地上和天上的物質的成分及原子內部的變化。因此這些光學儀器已成為物理學、分析化學、物理化學和天體物理學中的重要實驗手段。
蒸汽機的發明推動了熱學的發展 ,18世紀60年代在 J.瓦特改進蒸汽機的同時,他的摯友J.布萊克區分了溫度和熱量,建立了比熱容和潛熱概念,發展了量溫學和量熱學,所形成的熱質說和熱質守恆概念統治了80多年。在此期間,盡管發現了氣體定律,度量了不同物質的比熱容和各類潛熱 ,但對蒸汽機的改進幫助不大,蒸汽機始終以很低的效率運行。1755年法國科學院堅定地否決了永動機 。1807年T.楊以「能」代替萊布尼茲的「活力」 ,1826年 J. V. 彭賽列創造了「功」這個詞。1798年和1799年,朗福德和H.戴維分析了摩擦生熱,向熱質說挑戰;J.P.焦耳從 19 世紀 40 年代起到1878年,花了近40年時間,用電熱和機械功等各種方法精確地測定了熱功當量 ;生理學家 J.R.邁爾和H.von亥姆霍茲 ,更從機械能、電能、化學能、生物能和熱的轉換,全面地說明能量既不能產生也不會消失,確立了熱力學第一定律即能量守恆定律。在此前後,1824年,S.卡諾根據他對蒸汽機效率的調查,據熱質說推導出理想熱機效率由熱源和冷卻源的溫度確定的定律。文章發表後並未引起注意。後經R.克勞修斯和開爾文分別提出兩種表述後,才確認為熱力學第二定律。克勞修斯還引入新的態函數熵;以後,焓、亥姆霍茲函數、吉布斯函數 等態函數相繼引入 ,開創了物理 化學 中的重要分支——熱化學。熱力學指明了發明新熱機、提高熱機效率等的方向,開創了熱工學;而且在物理學、化學、機械工程、化學工程 、冶金學等方面也有廣泛的指向和推動作用。這些使物理化學開創人之一W.奧斯特瓦爾德曾一度否認原子和分子的存在 ,而宣揚「唯能論」,視能量為世界的最終存在 。但另一方面,J.C.麥克斯韋的分子速度分布率(見麥克斯韋分布)和L.玻耳茲曼的能量均分定理把熱學和力學綜合起來,並將概率規律引入物理學,用以研究大量分子的運動,創建了氣體分子動力論(現稱氣體動理論),確立了氣體的壓強、內能、比熱容等的統計性質,得到了與熱力學協調一致的結論。玻耳茲曼還進一步認為熱力學第二定律是統計規律,把熵同狀態的概率聯系起來,建立了統計熱力學。任何實際物理現象都不可避免地涉及能量的轉換和熱量的傳遞,熱力學定律就成為綜合一切物理現象的基本規律。經過20世紀的物理學革命,這些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和無序乃至漲落和混沌等概念,已經從有關的自然科學分支中移植到社會科學中。
在19世紀20年代以前 ,電和磁始終認為 是兩種不同的物質,因此,盡管1600年W.吉伯發表《論磁性》,對磁和地磁現象有較深入的分析 ,1747 年B.富蘭克林提出電的單流質理論,闡明了正電和負電,但電學和磁學的發展是緩慢,1800年A.伏打發明伏打電堆,人類才有能長期供電的電源 ,電開始用於通信 ;但要使用一個電弧燈 ,就需聯接2千個伏打電池,所以電的應用並不普及。1920年H.C.奧斯特的電流磁效應實驗,開始了電和磁的綜合,電磁學就迅猛發展,幾個月內 ,通過實驗A.-M.安培建立平行電流間的安培定律 ,並提出磁分子學說 ,J.-B.畢奧和F.薩伐爾建立載流導線對磁極的作用力(後稱畢-薩-拉定律),阿拉戈發明電磁鐵並發現磁阻尼效應,這些成就奠定了電磁學的基礎。1831年M.法拉第發現電磁感應現象,磁的變化在閉合迴路中產生了電流,完成了電和磁的綜合,並使人類獲得新的電源。1867年W.von 西門子發明自激發電機 ,又用變壓器完成長距離輸電,這些基於電磁感應的設備,改變了世界面貌,創建了新的學科——電工學和電機工程。法拉第還把場的概念引入電磁學;1864年麥克斯韋進一步把場的概念數學化,提出位移電流和有旋電場等假設,建立了麥克斯韋方程組,完善了電磁理論,並預言了存在以光速傳播的電磁波。但他的成就並沒有即時被理解,直到H.R.赫茲完成這組方程的微分形式,並用實驗證明麥克斯韋預言的電磁波,具有光波的傳播速度和反射 、折射干涉、衍射、偏振等一切性質,從而完成了電磁學和光學的綜合,並使人類掌握了最快速的傳遞各種信息的工具 ,開創了電子學這門新學科。
直到19世紀後半葉 ,電荷的本質是什麼 ,仍沒有搞清楚,盛極一時的以太論,認為電荷不過是以太海洋中的渦元。H.A.洛倫茲首先把光的電磁理論與物質的分子論結合起來 ,認為分子是帶電的諧振子 ,1892年起 ,他陸續發表「電子論」的文章 ,認為1859年 J.普呂克爾發現的陰極射線就是電子束;1895年提出洛倫茲力公式,它和麥克斯韋方程相結合,構成了經典電動力學的基礎;並用電子論解釋了正常色散、反常色散(見光的色散)和塞曼效應。1897年J.J.湯姆孫對不同稀薄氣體、不同材料電極製成的陰極射線管施加電場和磁場,精確測定構成陰極射線的粒子有同一的荷質比 ,為電子論提供了確切的實驗根據。電子就成了最先發現的亞原子粒子 。1895年W.K.倫琴發現X射線,延伸了電磁波譜 ,它對物質的強穿透力,使它很快就成為診斷疾病和發現金屬內部缺陷的工具 。1896年A.-H.貝可勒爾發現鈾的放射性 ,1898年居里夫婦發現了放射性更強的新元素——釙和鐳,但這些發現一時尚未引起物理學界的廣泛注意
20世紀的物理學 到19世紀末期 ,經典物理學已經發展到很完滿的階段,許多物理學家認為物理學已接近盡頭,以後的工作只是增加有效數字的位數。開爾文在19世紀最後一個除夕夜的新年祝詞中說:「物理大廈已經落成,……動力理論確定了熱和光是運動的兩種方式,現在它的美麗而晴朗的天空出現兩朵烏雲,一朵出現在光的波動理論,另一朵出現在麥克斯韋和玻耳茲曼的能量均分理論。」前者指的是以太漂移和邁克耳孫 - 莫雷測量地球對(絕對靜止的)以太速度的實驗,後者指用能量均分原理不能解釋黑體輻射譜和低溫下固體的比熱。恰恰是這兩個基本問題和開爾文所忽略的放射性,孕育了20世紀的物理學革命。
1905 年 A. 愛因斯坦為了解決電動力學應用於動體的不對稱(後稱為電動力學與伽利略相對性原理的不協調),創建了狹義相對論,即適用於一切慣性參考系的相對論。他從真空光速不變性出發,即在一切慣性系中,運動光源所射出的光的速度都是同一值,推出了同時的相對性和動系中尺縮 、鍾慢的結論 ,完滿地解釋了洛倫茲為說明邁克耳孫 -莫雷實驗提出的洛倫茲變換公式,從而完成了力學和電動力學的綜合。另一方面,狹義相對論還否定了絕對的空間和時間,把時間和空間結合起來,提出統一的相對的時空觀構成了四度時空;並徹底否定以太的存在,從根本上動搖了經典力學和經典電磁學的哲學基礎,而把伽利略的相對性原理提高到新的階段,適用於一切動體的力學和電磁學現象。但在動體或動系的速度遠小於光速時,相對論力學就和經典力學相一致了。經典力學中的質量、能量和動量在相對論中也有新的定義,所導出的質能關系為核能的釋放和利用提供了理論准備。1915年,愛因斯坦又創建廣義相對論,把相對論推廣到非慣性系,認為引力場同具有相當加速度的非慣性系在物理上是完全等價的,而且在引力場中時空是彎曲的,其曲率取決於引力場的強度,革新了宇宙空間都是平直的歐幾里得空間的舊概念。但對於范圍和強度都不很大的引力場如地球引力場,可以完全不考慮空間的曲率,而對引力場較強的空間如太陽等恆星的周圍和范圍很大的空間如整個可觀測的宇宙空間 ,就必須考慮空間曲率。因此廣義相對論解釋了用牛頓引力理論不能解釋的一些天文現象,如水星近日點反常進動、光線的引力偏析等。以廣義相對論為基礎的宇宙學已成為天文學的發展最快的一個分支。
另一方面 ,1900年 M.普朗克提出了符合全波長范圍的黑體輻射公式,並用能量量子化假設從理論上導出,首次提出物理量的不連續性。1905年愛因斯坦發表光量子假設,以光的波粒二象性,解釋了光電效應;1906年又發表固體熱容的量子理論;1913年N.玻爾(見玻爾父子)發表玻爾氫原子理論,用量子概念准確地地計算出氫原子光譜的巴耳末公式,並預言氫原子存在其他線光譜,後獲證實。1918年玻爾又提出對應原理,建立了經典理論通向量子理論的橋梁;1924年L.V.德布羅意提出微觀粒子具有波粒二象性的假設,預言電子束的衍射作用;1925年W.泡利發表泡利不相容原理,W.K.海森伯在M.玻恩和數學家E.P.約旦的幫助下創立矩陣力學 ,P.A.M.狄拉克提出非對易代數理論 ;1926 年
E.薛定諤根據波粒二象性發表波動力學的一系列論文,建立了波函數,並證明波動力學和矩陣力學是等價的,遂即統稱為量子力學 。同年6月玻恩提出了波函數的統計解釋 ,表明單個粒子所遵循的是統計性規律而非經典的確定性規律;1927年海森伯發表不確定性關系;1928年發表相對論電子波動方程,奠定了相對論性量子理論的基礎。由於一切微觀粒子的運動都遵循量子力學規律,因此它成了研究粒子物理學、原子核物理學、原子物理學、分子物理學和固體物理學的理論基礎,也是研究分子結構的重要手段,從而發展了量子化學這個化學新分支。
差不多同時,研究由大量粒子組成的粒子系統的量子統計法也發展起來了 ,包括1924年建立的玻色-愛因斯坦分布和1926年建立的費米-狄拉克分布 ,它們分別適應於自旋為整數和半整數的粒子系統。稍後,量子場論也逐漸發展起來了 。1927年 ,狄拉克首先提出將電磁場作為一個具有無窮維自由度的系統進行量子化的方案,以處理原子中光的自發輻射和吸收問題。1929年海森伯和泡利建立了量子場論的普遍形式,奠定了量子電動力學的基礎。通過重正化解決了發散困難,並計算各階的輻射修正,所得的電子磁矩數值與實驗值只相差2.5×10-10 ,其准確度在物理學中是空前的 。量子場論還正向統一場論的方向發展,即把電磁相互作用、弱相互作用、強相互作用和引力相互作用統一在一個規范理論中,已取得若干成就的有電弱統一理論、量子色動力學和大統一理論等。
「實踐是真理的唯一標准」,物理學也同樣遵循這一標准。一切假說都必須以實驗為基礎,必須經受住實驗的驗證。但物理學也是思辨性很強的科學,從誕生之日起就和哲學建立了不解之緣。無論是伽利略的相對性原理、牛頓運動定律、動量和能量守恆定律 、麥克斯韋方程乃至相對論、量子力學,無不帶有強烈的、科學的思辨性。有些科學家例如在19世紀中主編《物理學與化學》雜志的J.C.波根多夫曾經想把思辨性逐出物理學,先後兩次以具有思辨性內容為由,拒絕刊登邁爾和亥姆霍茲的論能量守恆的文章,終為後世所詬病。要發現隱藏在實驗事實後面的規律,需要深刻的洞察力和豐富的想像力。多少物理學家關注θ-τ之謎 ,唯有華裔美國物理學家李政道和楊振寧,經過縝密的思辨,檢查大量文獻,發現謎後隱藏著未經實驗鑒定的弱相互作用的宇稱守恆的假設。而從物理學發展史來看,每一次大綜合都促使物理學本身和有關學科的很大發展,而每一次綜合既以建立在大量精確的觀察、實驗事實為基礎,也有深刻的思辨內容。因此一般的物理工作者和物理教師,為了更好地應用和傳授物理知識,也應從物理學的整個體系出發,理解其中的重要概念和規律。
應用 物理學是廣泛應用於生產各部門的一門科學 ,有人曾經說過,優秀的工程師應是一位好物理學家。物理學某些方面的發展,確實是由生產和生活的需要推動的。在前幾個世紀中,卡諾因提高蒸汽機的效率而發現熱力學第二定律,阿貝為了改進顯微鏡而建立光學系統理論,開爾文為了更有效地使用大西洋電纜發明了許多靈敏電學儀器;在20世紀內,核物理學、電子學和半導體物理、等離子體物理乃至超聲學、水聲學、建築聲學、雜訊研究等的迅速發展,顯然和生產 、生活的需要有關。因此,大力開展應用物理學的研究是十分必要的。另一方面,許多推動社會進步,大大促進生產的物理學成就卻肇始於基本理論的探求,例如:法拉第從電的磁效應得到啟發而研究磁的電效應,促進電的時代的誕生;麥克斯韋為了完善電磁場理論,預言了電磁波,帶來了電子學世紀;X射線、放射性乃至電子 、中子的發現 ,都來自對物質的基本結構的研究。從重視知識、重視人才考慮,尤應注重基礎理論的研究。因此為使科學技術達到世界前列,基礎理論研究是絕不能忽視的。
展望 21世紀的前夕 ,科學家將從本學科出發考慮百年前景。物理學是否將如前兩三個世紀那樣,處於領先地位,會有一番爭議,但不會再有一位科學家像開爾文那樣,斷言物理學已接近發展的終端了。能源和礦藏的日漸匱乏,環境的日漸惡化,向物理學提出解決新能源、新的材料加工、新的測試手段的物理原理和技術。對粒子的深層次探索,解決物質的最基本的結構和相互作用,將為人類提供新的認識和改造世界的手段,這需要有新的粒子加速原理,更高能量的加速器和更靈敏、更可靠的探測器。實現受控熱核聚變,需要綜合等離子體物理、激光物理、超導物理、表面物理、中子物理等方面知識,以解決有關的一系列理論技術問題。總之,隨著新的技術革命的深入發展,物理學也將無限延伸。
C. 物理學的發展史
近代意義的物理學誕生於歐洲15—17世紀。人們一般將歐洲歷史作為物理學史的社會背景。從遠古到公元5世紀屬古代史時期;5—13世紀為中世紀時期;14—16世紀為文藝復興運動時期;16—17世紀為科學革命時期,以N.哥白尼、伽利略、牛頓為代表的近代科學在此時期產生。
從此之後,科學隨各個世紀的更替而發展。近半個世紀,人們按照物理學史特點,將其發展大致分期如下:從遠古到中世紀屬古代時期。從文藝復興到19世紀,是經典物理學時期。牛頓力學在此時期發展到頂峰,其時空觀、物質觀和因果關系影響了光、聲、熱、電磁的各學科。
甚而影響到物理學以外的自然科學和社會科學。隨著20世紀的到來,量子論和相對論相繼出現;新的時空觀、概率論和不確定度關系等在宇觀和微觀領域取代牛頓力學的相關概念,人們稱此時期為近代物理學時期。
(3)物理學有多少年的歷史擴展閱讀:
伽利略·伽利雷(1564~1642年)人類現代物理學的創始人,奠定了人類現代物理科學的發展基礎。1900~1926年 建立了量子力學。1926年 建立了費米狄拉克統計。1927年 建立了布洛赫波的理論。1928年 索末菲提出能帶的猜想。1929年 派爾斯提出禁帶、空穴的概念。
同年貝特提出了費米面的概念。1947年貝爾實驗室的巴丁、布拉頓和肖克萊發明了晶體管,標志著信息時代的開始。1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子。1958年傑克.基爾比發明了集成電路。20世紀70年代出現了大規模集成電路。
發展前景:
應用物理學專業的畢業生主要在物理學或相關的科學技術領域中從事科研、教學、技術開發和相關的管理工作。科研工作包括物理前沿問題的研究和應用,技術開 發工作包括新特性物理應用材料如半導體等,應用儀器的研製如醫學儀器、生物儀器、科研儀器等。
應用物理專業的就業范圍涵蓋了整個物理和工程領域,融物理理 論和實踐於一體,並與多門學科相互滲透。應用物理學專業的學生如具有扎實的物理理論的功底和應用方面的經驗,能夠在很多工程技術領域成為專家。我國每年培養本科應用物理專業人才約12000人。
和該專業存在交叉的專業包括物理專業,工程物理專業,半導體和材料專業等。人才需求方面,我國對應用物理專業的人才需求仍舊是供不應求。
D. 物理學家的歷史
恩利克費米(Enrico Fermi,1901~1954)美籍義大利物理學家。對統計物理、原子物理、原子核物理、粒子物理、中子物理都有重要貢獻。
1934年用中子轟擊原子核產生人工放射現象。開始中子物理學研究。被譽為「中子物理學之父」。
1938年由於 「通過中子照射展示新的放射性元素的存在,以及通過慢中子核反應獲得的新發現(demonstrations of the existence of new radioactive elements proced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons)獲得諾貝爾物理獎。
他於1954年去逝。100號化學元素鐨就是為紀念他而命名的。
1954年,為紀念費米對核物理學的貢獻,美國原子能委員會建立了「費米獎」,以表彰為和平利用核能作出貢獻的各國科學家。
E. 物理學發展史是什麼
1. 古代物理學時期
這一時期是從公元前8世紀至公元15世紀,是物理學的萌芽時期。無論在東方還是在西方,物理學還處於前科學的萌芽階段,嚴格的說還不能稱其為「學」。物理知識一方麵包含在哲學中,如希臘的自然哲學,另一方面體現在各種技術中,如中國古代的科技。 這一時期的物理學有如下特徵:在研究方法上主要是表面的觀察、直覺的猜測和形式邏輯的演繹;在知識水平上基本上是現象的描述、經驗的膚淺的總結和思辨性的猜測;在內容上主要有物質本原的探索、天體的運動、靜力學和光學等有關知識,其中靜力學發展較為完善;在發展速度上比較緩慢,社會功能不明顯。 這一時期的物理學對於西方又可分為兩個階段,即古希臘-羅馬階段和中世紀階段。〖1〗古希臘-羅馬階段(公元前8世紀至公元5紀)。主要有古希臘的原子論、阿基米德(Archimedes,公元前287-公元前212)的力學、托勒密(Claudius Ptolemaeus,約90-168)的天文學等。〖2〗中世紀階段(公元5世紀至公元15世紀)。主要有勒·哈增(AL-Hazen,約965-1038)的光學、沖力說等。
2. 近代物理學時期 (又稱經典物理學時期)
這一時期是從16世紀至19世紀,是經典物理學的誕生、發展和完善時期。物理學與哲學分離,走上獨立發展的道路,迅速形成比較完整嚴密的經典物理學科學體系。 這一時期的物理學有如下特徵:在研究方法上採用實驗與數學相結合、分析與綜合相結合和歸納與演繹相結合等方法;在知識水平上產生了比較系統和嚴密科學理論與實驗;在內容上形成比較完整嚴密的經典物理學科學體系;在發展速度上十分迅速,社會功能明顯,推動了資本主義生產與社會的迅速發展。 這一時期的物理學又可細分為三個階段。〖1〗草創階段(16世紀至17世紀)。主要在天文學和力學領域中爆發了一場「科學革命」,牛頓力學誕生。〖2〗消化和漸進階段(18世紀)。建立了分析力學,光學、熱學和靜電學也取得較大的發展。〖3〗鼎盛階段(19世紀)。相繼建立了波動光學、熱力學與分子運動論、電磁學,使經典物理學體系臻於完善。
3. 現代物理學時期
這一時期是從19世紀末至今,是現代物理學的誕生和取得革命性發展時期。物理學的研究領域得到巨大的拓展,實驗手段與設備得到前所未有的增強,理論基礎發生了質的飛躍。 這一時期的物理學有如下特徵:在研究方法上更加依賴大規模的實驗、高度抽象的理性思維和國際化的合作與交流;在認識領域上拓展到微觀(10-13)與宇觀(200億光年)和接近光速的高速運動新領域,變革了人類對物質、運動、時空、因果律的認識;在發展速度上非常迅猛,社會功能十分顯著,推動了社會的飛速發展。 這一時期的物理學又可大致地分為兩個階段。〖1〗革命與奠基階段(1895年至1927年)。建立了相對論和量子力學,奠定了現代物理學的基礎。〖2〗飛速發展階段(1927年至今)產生了量子場論、原子核物理學、粒子物理學、半導體物理學、現代宇宙學、現代物理技術等分支學科。
F. 化學和物理有多少年歷史了
化學是自然科學的一種,在分子、原子層次上研究物質的組成、性質、結構與變化規律;創造新物質的科學。世界由物質組成,化學則是人類用以認識和改造物質世界的主要方法和手段之一。它是一門歷史悠久而又富有活力的學科,它的成就是社會文明的重要標志...
G. 近代西方物理學發展史
1、 近代物理學時期又稱經典物理學時期,這一時期是從16世紀至19世紀,是經典物理學的誕生、發展和完善時期。
近代物理學是從天文學的突破開始的。早在公元前4世紀,古希臘哲學家亞里士多德就已提出了「地心說」,即認為地球位於宇宙的中心。公元140年,古希臘天文學家托勒密發表了他的13卷巨著《天文學大成》,在總結前人工作的基礎上系統地確立了地心說。
這一學說從表觀上解釋了日月星辰每天東升西落、周而復始的現象,又符合上帝創造人類、地球必然在宇宙中居有至高無上地位的宗教教義,因而流傳時間長達1300餘年。
公元15世紀,哥白尼經過多年關於天文學的研究,創立了科學的日心說,寫出「自然科學的獨立宣言」——《天體運行論》,對地心說發出了強有力的挑戰。
16世紀初,開普勒通過從第谷處獲得的大量精確的天文學數據進行分析,先後提出了行星運動三定律。開普勒的理論為牛頓經典力學的建立提供了重要基礎。從開普勒起,天文學真正成為一門精確科學,成為近代科學的開路先鋒。
近代物理學之父伽利略,用自製的望遠鏡觀測天文現象,使日心說的觀念深入人心。他提出落體定律和慣性運動概念,並用理想實驗和斜面實驗駁斥了亞里士多德的「重物下落快」的錯誤觀點,發現自由落體定律。
16世紀,牛頓總結前人的研究成果,系統的提出了力學三大運動定律,完成了經典力學的大一統。16世紀後期創立萬有引力定律,樹立起了物理學發展史上一座偉大的里程碑。
之後兩個世紀,是電學的大發展時期,法拉第用實驗的方法,完成了電與磁的相互轉化,並創造性地提出了場的概念。19世紀,麥克斯韋在法拉第研究的基礎上,憑借其高超的數學功底,創立了了電磁場方程組,在數學形式上完成了電與磁的完美統一,完成了電磁學的大一統。
與此同時,熱力學與光學也得到迅速發展,經典物理學逐漸趨於完善。
(7)物理學有多少年的歷史擴展閱讀:
近代物理學發展越發緩慢,主要是因為數學模型的復雜度和詮釋的難度的提高造成的吧,或者換句話說,並不是物理學的發展變慢了,只是想把它簡單的表述給人們變得越來越難。人們無從了解,自然就覺得是學科不發展。
早在經典物理比如經典力學和熱力學,雖然數學模型也不簡單但是詮釋是很直觀的。就是說數學符號對應的物理實際是很顯而易見的。
而現代的,比如量子場論和弦論,甚至廣義相對論的數學模型比經典物理要復雜的多。而且很多數學模型還不完備,這些其實都不是大問題。關鍵是如何詮釋,如何理解量子場論中的量子場的物理實際,甚至更低級別一些,量子力學中的波函數是什麼,目前雖有一些公認的解釋但是很不令人滿意。
而且對於物理過程的概率詮釋從一方面直接從理論層面阻礙了對更基礎的物理結構的研究,這也跟我們的實驗觀察能力的限制有關。我們不能建立超越我們觀察能力的理論,或者我們可以建立任何理論但是對於超越觀察能力的部分我們不能做任何研究。
綜上所述,其實物理學現在的發展並不慢,只是人們的認知問題而已。
H. 物理學有幾百年的歷史
你好!
作為發展的萌芽階段,可以追溯到2000多年前,比如那時候就發現了一些物理現象,並且對這些現象做出過經驗性的總結,但是並不能稱之為物理學。
真正的物理學理論體系的建立,應該從牛頓的那本劃時代著作《自然哲學的數學原理》開始的,也就是在17世紀80年代。
I. 物理學發展歷史約為多久
可以說很久了,最早可追溯到亞里士多德,阿基米德時代吧