❶ 葯物的發展史
l9世紀末,化學工業的興起,Ehrlich化學治療概念的建立, 為20世紀初化學葯物的合成和進展奠定了基礎。例如早期的含銻、砷的有機葯物用於治療錐蟲病、阿米巴病和梅毒等。在此基礎上發展用於治療瘧疾和寄生蟲病的化學葯物。 20世紀30年代中期發現百浪多息和磺胺後,合成了一系列磺胺類葯物。1940年青黴素療效得到肯定,β內醯胺類抗生素得到飛速發展。化學治療的范圍日益擴大,已不根於細茵感染的疾病。隨著1940年woods和FildeS抗代謝學說的建立,不僅闡明抗菌葯物的作用機理,也為尋找新葯開拓了新的途徑。例如根據抗代謝學說發現抗腫搐葯·利尿葯和抗瘧葯等。葯物結構與生物活性關系的研究也隨之開展,為創制新葯和先導物提供了重要依據。30比~40年代發現的化學葯物最多,此時期是葯物化學發展史上的豐收時代。 進人50年代後,新葯數量不及初階段,葯物在機體內的作用機理和代謝變化逐步得到闡明,導致聯系生理、生化效應和針對病因尋找新葯·改進了單純從葯物的顯效基團或基本結構尋找新葯的方法。例如利用潛效(Latentiation)和前葯(Prodrug)概念,設計能降低毒副作用和提高選擇性的新化合物。1952年發現治療精神分裂症的氯丙嗪後·精神神經疾病的治療,取得突破性的進展。非甾體抗炎葯是60年代中期以後研究的活躍領域,一系列抗炎新葯先後上市。 60年代以後構效關系研究發展很快,已由定性轉向定量方面。定量構效關系(QSAR)是將化合物的結構信息、理化參數與生物活性進行分析計算,建立合理的數學模型,研究構-效之間的量變規律,為葯物設計、指導先導化合物結構改造提供理論依據。QSAR常用方法有Hansch線性多元回歸模型,Free-WilSon加合模型和Kier分子連接性等。所用的參數大多是由化合物二維結構測得,稱為二維定量構效關系(2D-QSAR)。50~60年代是葯物化學發展的重要時期70年代迄今,對葯物潛在作用靶點進行深入研究,對其結構、功能逐步了解。另外,分子力學和量子化學與葯學科學的滲透,X衍射、生物核磁共振、資料庫、分子圖形學的應用,為研究葯物與生物大分子三維結構,葯效構象以及二者作用模式,探索構效關系提供了理論依據和先進手段,現認為SD-QSAR與基於結構的設計方法相結合,將使葯物設計更趨於合理化。 對受體的深入研究·尤其許多受體亞型的發現,促進了受體激動劑和秸抗劑的發展,尋找特異性地僅作用某一受體亞型的葯物,可提高其選擇性。如β和α腎上腺素受體及其亞型阻滯劑是治療心血管疾病的常用葯物;組胺H2受體阻滯劑能治療胃及十二指腸潰瘍。內源性腦啡酞類對阿片受體有激動作用,因而呈現鎮痛活性,目前阿片受體有多種亞型(如δεγηκ等)為設計特異性鎮痛葯開拓了途徑。 酶是高度特異性的蛋白質,生命活動許多是由酶催化的生化反應,故具有重要的生理生化活性。隨著對酶的三維結構、活性部位的深入研究,以酶為記點進行的酶抑制劑研究,取得很大進展。例如通過干擾腎素(Renin)-血管緊張素(Angiotensin)-醛固醇(Aldosterone)系統調節而達到降壓效用的血管緊張汞轉化酶(ACE)抑制劑,是7O年代中期發展起來的降壓葯。一系列的ACE抑制劑如卡托普利、依那普利·賴諾普利等已是治療高血壓、心力衰竭的重要葯物。3羥基-3-甲戊二醯輔酶A(HMG-CoA)還原酶抑制劑,對防治動脈粥樣硬化、降血脂有較好的療效。噻氯匹定可抑制血栓素合成酶·用於防治血栓形成。 離子通道類似於活化酶存在於機體的各種組織,參與調節多種生理功能。7O年代末發現的一系列鈣拮抗劑(Calcium Antagonists)是重要的心腦血管葯,其中二氫砒錠啶類研究較為深入·品種也較多,各具葯理特點。近年發現的鉀通通調控劑為尋找抗高血壓、抗心紋痛和I類抗心律失常葯開辟了新的途徑。 細胞癌變認為是由於基因突變導致基因表達失調和細胞無限增殖所引起的,因此可將癌基因作為記點,利用反義技術(antisense technology)抑制細胞增殖的方法,可設計新型抗癌葯。 8O年代初諾氟沙星用於臨床後,迅速掀起喹諾酮類抗菌葯的研究熱潮,相繼合成了一系列抗菌葯物,這類抗菌葯和一些新抗生素的問世,認為是合成抗菌葯發展史上的重要里程碑。 尋找內源性活性物質是葯物化學研究的內容之一,近年來發現許多活性多肽和細胞因子·如心鈉素(ANF)是8O年代初從鼠心肌勻漿分離出的心房肽,具有很強的利尿、降壓和調節心律的作用,內皮舒張因子(EDRF)NO是同時期證實由內皮細胞分泌具有舒張血管作用的物質,其化學本質後證實是一氧化氮(Ho)。它是調節心血管系統、神經系統和免疫系統功能的細胞信使分子,參與機體的多種生理作用,9O年代後,有關NO的研究已成國際的熱點。NO供體和NO合酶抑制劑的研究正方興未艾,將為心血管抗炎葯等開拓新的領域。 生物技術(生物工程)是近2O年發展的高新技術,醫葯生物技術已成為新興產業和經濟生長點。9O年代初以來上市的新葯中,生物技術產品佔有較大的比例,並有迅速上升的趨勢。通過生物技術改造傳統制葯產業可提高經濟效益,利用轉基因動物-乳腺生物反應器研製、生產葯品,將是21世紀生物技術領域研究的熱點之一。 近年來發展的組合化學技術,能合成數量眾多的結相關的化合物,建立有序變化的多樣性分子庫,進行集約快構速篩選,這種大量合成和高通量篩選,無疑對發現先導化合物和提高新葯研究水平都具有重要意義。 70-90年代,新理論、新技術、學科間交叉淮透形成的新興學科,都促進了葯物化學的發展,認為是葯物化學承前啟後,繼往開來的關鍵時代。 人們認為20世紀中、後期葯物化學的進展和大量新葯上市,歸納為三方面主要原因:(l)生命科學,如結構生物學、分子生物學、分子遺傳學、基因學和生物技術的進展,為發現新葯提供理論依據和技術支撐(2)信息科學的突飛猛進,如生物信息學的建立,生物晶元的研製,各種信息效據庫和信息技術的應用,可便捷地檢索和搜尋所需安的文獻資料,研究水平和效率大為提高;(3)制葯企業為了爭取國際市場,投入大且資金用於新葯研究和開發(R&D),新葯品種不斷增加,促進了醫葯工業快速發展。
希望採納