A. 五年級數學小報內容是什麼
五年級數學小報內容是:
1、在日常生活中,從天氣預報到股票漲落,到處充斥著數學的描述和分析方法。作為一門建立科學研究基礎理論的學問,數學的發展帶來了其他自然科學的發展與進步。
2、在小學階段,數主要有兩類:自然數和小數。小數有整數部分,小數部分和小數點組成。小數又可分為:自然數是指表示物體個數的數。自然數按照是否能被2整除,分為偶數和奇數。自然數按照因數的個數,又可分為0,1,質數和合數。
3、數學是研究數量關系和空間圖形的一門學科,它具有基礎性和人文性。數學是知識海洋中一顆璀燦的明珠,它有助於啟迪智慧,開發智力,培養創新意識和提高實踐能力。
4、泰勒斯看到人們都在看告示,便上去看。原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。於是就找法老。
法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,他量了金字塔影子的長度和金字塔底面邊長的一半。把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。
5、戰國時期,齊威王與大將田忌賽馬,齊威王和田忌各有三匹好馬:上馬,中馬與下馬。比賽分三次進行,每賽馬以千金作賭。由於兩者的馬力相差無幾,而齊威王的馬分別比田忌的相應等級的馬要好,所以一般人都以為田忌必輸無疑。
但是田忌採納了門客孫臏(著名軍事家)的意見,用下馬對齊威王的上馬,用上馬對齊威王的中馬,用中馬對齊威王的下馬,結果田忌以2比1勝齊威王而得千金。這是我國古代運用對策論思想解決問題的一個範例。
B. 5年級數學手抄報內容資料
高斯(1777~1855)生於,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」質數分布定理、及算術幾何平均。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究,這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。
這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹同餘的概念。「二次互逆定理」也在其中。
二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。
當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。
高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」。
1802年,他又准確預測了小行星二號--智神星的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。
1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數,並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。
1820到1830年間,高斯為了測繪汗諾華公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。
1827年他發表了《曲面的一般研究》 ,涵蓋一部分現在大學念的「微分幾何」。
在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。
1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。
1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。
高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。
1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。
高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:
to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。
早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了......
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210
C. 五年級下冊數學手抄報,怎麼樣寫內容
一、五年級數學手抄報內容,名言名句:
1、數學是科學的皇後,而數論是數學的皇後Gauss音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科學可改善物質生活,但數學能給予以上的一切。2、數學是人類的思考中最高的成就。3、數學是人類智慧皇冠上最燦爛的明珠。4、數學是一種會不斷進化的文化。5、數學是無窮的科學。6、數學是研究抽象結構的理論。7、數學是研究現實生活中數量關系和空間形式的數學。8、數學是一切知識中的最高形式。9、數學是一種別具匠心的藝術。
二、數學手抄報內容,詩詞中的數學
1.闕輔三秦,風煙望五津。2.烽火連三月,家書抵萬金。3.功蓋三分國,名成八陣圖。4.千山鳥飛絕,萬徑人蹤滅。5.欲窮千里目,更上一層樓。6.七八個星天外,兩三點雨山前。7.畢竟西湖六月中,風光不與四時同。8.三顧頻煩天下計,兩朝開濟老臣心。9. 飛流直下三千尺,疑是銀河落九天。10.梅須遜雪三分白,雪卻輸梅一段香。11.兩岸猿聲啼不住,輕舟已過萬重山。13.故國三千里,深宮二十年。14.兩個黃鸝鳴翠柳,一行白鷺上青天。窗含西嶺千秋雪,門泊東吳萬里船。15.坐地日行八萬里,巡天遙看一千河。
D. 數學手抄報的內容可以寫什麼小學五年級
1.數學知識(如:5年級奧數概念……)
2.數學小故事(和數學有關的故事)
3.數學家的故事、簡介(劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是中國最早明確主張用邏輯推理的方式來論證數學命題的人.劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富。 祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是 π的漸近分數。
還有些資料,,
華 羅 庚
華羅庚,中國現代數學家。1910年11月12日生於江蘇省金壇縣。1985年6月12日在日本東京逝世。華羅庚1924年初中畢業之後,在上海中華職業學校學習不到一年,因家貧輟學,他刻苦自修數學,1930年在《科學》上發表了關於代數方程式解法的文章,受到專家重視,被邀到清華大學工作,開始了數論的研究,1934年成為中華教育文化基金會研究員。1936年作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應蘇聯普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年始,他為伊利諾伊大學教授。
1950年回國,先後任清華大學教授、中國科技大學數學系主任、副校長,中國科學院數學研究所所長、中國科學院應用數學研究所所長、中國科學院副院長等。華羅庚還是第一、二、三、四、五屆全國人大常委會委員和政協第六屆全國委員會副主席。
華羅庚是國際上享有盛譽的數學家,他在解析數論、矩陣幾何學、多復變函數論、偏微分方程等廣泛數學領域中都做出卓越貢獻,由於他的貢獻,有許多定理、引理、不等式與方法都用他的名字命名。為了推廣優選法,華羅庚親自帶領小分隊去二十七個省普及應用數學方法達二十餘年之久,取得了明顯的經濟效益和社會效益,為我國經濟建設做出了重大貢獻。思考題;某店來了三位顧客,急於要買餅趕火車,限定時間不能超過16分鍾。幾個廚師都說無能為力,因為要烙熟一個餅的兩面各需要五分鍾,一口鍋一次可放兩個餅,那麼烙熟三個餅就得2O分鍾。這時來了廚師老李,他說動足腦筋只要15分鍾就行了。你知道該怎麼來烙嗎? ……)
希望可以幫到你
E. 小學五年級的數學的手抄報可以寫哪些內
你好..你可以根據以下幾個方面來寫..這都是我所積累的經驗..自己幫你選取了一些主要材料嗒!!~加油滴說~O(∩_∩)O~
1.數學是什麼?
我國古代把數學叫算術,又稱算學,最後才改為數學。
數學是研究數量、結構、變化以及空間模型等概念的一門學科。通過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
2.數學的領域
(1)數量
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。
(2)結構
許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。
(3)空間
空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及數,且包含有著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。
(4)基礎與哲學
康托(GeorgCantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。
3.數學名言
·數統治著宇宙。——畢達哥拉斯
·數學,科學的女皇;數論,數學的女皇。——CoFo高斯
·上帝創造了整數,所有其餘的數都是人造的。——Lo克隆內克
·上帝是一位算術家——雅克比
·一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家。——維爾斯特拉斯
大功告成!從3各方面來寫的話..你絕對會得到好評..但主要還是在繪畫上多畫點花紋..設計鮮艷..就可以啦!0v0~以下圖片是我小學時畫的..呵呵~+僅供參考!!
F. 關於數學手抄報的內容有哪些
第一寫關於數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
G. 小學五年級數學手抄報應該寫什麼內容
數學史,數學家趣事,某些數學問題巧解方法,可以盡量多地畫圖彌補空白,把字寫大點。
H. 五年級數學小報該寫什麼
首先按手抄報的形式畫一些框,然後內容寫一下數學書上的一些知識,還有就是這個:高斯二年級時,有一天他的數學老師了出一題數學題目給學生練習,他的題目是:1+2+3+4+5+6+7+8+9+10=?,因為加法剛教不久,所以老師覺得出了這題,學生肯定是要算很久才有能算出來,但是才一轉眼的時間,高斯已停下了筆,閑閑地坐在那裡,老師看到了很生氣的訓斥高斯,但是高斯卻說他已經將答案算出來了,就是55,老師聽了嚇了一跳,就問高斯如何算出來的,高斯答道,我只是發現1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和還是11,又11+11+11+11+11=55,我就是這么算的。高斯長大後,成為一位很偉大的數學家。
I. 5年級數學小報內容有哪些
在學習和工作中,大家對手抄報都再熟悉不過了吧,手抄報具有開拓視野、積累知識的作用。那什麼樣的手抄報才是大家都稱贊的呢?以下是幫大家整理的五年級上冊數學手抄報內容,歡迎大家分享。
一、最小的數字。
古老而龐大的自然數家族,是由全體自然數1、2、3、4、5、6、7、8、9、10……集合在一起組成的。其中最小的是「1」,找不到最大的。如果你有興趣的話,可以找一找。
二、沒有最大的自然數。
也許你認為可以找到一個最大的自然數(n),但是,你立刻就會發現另一個自然數(n+1),它大於n。這就說明在自然數家族中永遠找不到最大的自然數。
三、「1」確實是自然數家族中最小的。
自然數是無限的,而「1」是自然數中最小的。有人提出異議,不同意「1」是最小的自然數,說「0」比「1」小,「0」應該是最小的自然數。這是不對的,因為自然數指的是正整數,「0」是唯一的非正非負的整數,因而「0」不屬於自然數家族。「1」確實是自然數家族中最小的。
可別小看了這個最小的「1」,它是自然數的單位,是自然數中的第一代,人類最先認識的是「1」,有了「1」,才能得到1、2、3、4……
給你講了萬數之首「1」的特殊地位,所以,你千萬別小看了它哦。
J. 五年級上數學手抄報資料有哪些
數學是無窮的科學。——赫爾曼外爾
數學中的一些美麗定理具有這樣的特性:它們極易從事實中歸納出來,但證明卻隱藏的極深。數學是科學之王。——高斯
在數學的領域中,提出問題的藝術比解答問題的藝術更為重要。——康扥爾
只要一門科學分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預示獨立發展的終止或衰亡。——希爾伯特
在數學的天地里,重要的不是我們知道什麼,而是我們怎麼知道什麼。——畢達哥拉斯
一門科學,只有當它成功地運用數學時,才能達到真正完善的地步。——馬克思
一個國家的科學水平可以用它消耗的數學來度量。——拉奧
數學的本質在於它的自由.——康扥爾(Cantor)
在數學的領域中,提出問題的藝術比解答問題的藝術更為重要.——康扥爾(Cantor)
沒有任何問題可以向無窮那樣深深的觸動人的情感,很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明.——希爾伯特(Hilbert)
只要一門科學分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預示著獨立發展的終止或衰亡.——希爾伯特
加減乘除(+、-、×(·)、÷(∶))等數學符號是我們每一個人最熟悉的符號,因為不光在數學學習中離不開它們,幾乎每天的日常的生活也離不開它們.別看它們這么簡單,直到17世紀中葉才全部形成.
法國數學家許凱在1484年寫成的《算術三篇》中,使用了一些編寫符號,如用D表示加法,用M表示減法.這兩個符號最早出現在德國數學家維德曼寫的《商業速演算法》中,他用「+」表示超過,用「—」表示不足.到1514年,荷蘭的赫克首次用「+」表示加法,用「—」表示減法.1544年,德國數學家施蒂費爾在《整數算術》中正式用「+」和「—」表示加減,這兩個符號逐漸被公認為真正的算術符號,廣泛採用.
以符號「×」代表乘是英國數學家奧特雷德首創的.他於1631年出版的《數學之鑰》中引入這種記法.據說是由加法符號+變動而來,因為乘法運算是從相同數的連加運算發展而來的.後來,萊布尼茲認為「×」容易與「X」相混淆,建議用「·」表示乘號,這樣,「·」也得到了承認.
除法符號「÷」是英國的瓦里斯最初使用的,後來在英國得到了推廣.除的本意是分,符號「÷」的中間的橫線把上、下兩部分分開,形象地表示了「分」.至此,四則運算符號齊備了,當時還遠未達到被各國普遍採用的程度.
1、點錯的小數點
學習數學不僅解題思路要正確,具體解題過程也不能出錯,差之毫釐,往往失之千里. 美國芝加哥一個靠養老金生活的老太太,在醫院施行一次小手術後回家.兩星期後,她接到醫院寄來的一張帳單,款數是63440美元.她看到偌大的數字,不禁大驚失色,駭得心臟病猝發,倒地身亡.後來,有人向醫院一核對,原來是電腦把小數點的位置放錯了,實際上只需要付63.44美元.
點錯一個小數點,竟要了一條人命.正如牛頓所說:"在數學中,最微小的誤差也不能忽略.
2、蒲豐試驗
一天,法國數學家蒲豐請許多朋友到家裡,做了一次試驗.蒲豐在桌子上鋪好一張大白紙,白紙上畫滿了等距離的平行線,他又拿出很多等長的小針,小針的長度都是平行線的一半.蒲豐說:「請大家把這些小針往這張白紙上隨便仍吧!」客人們按他說的做了。
蒲豐的統計結果是:大家共擲2212次,其中小針與紙上平行線相交704次,2210÷704≈3.142。蒲豐說:「這個數是π的近似值。每次都會得到圓周率的近似值,而且投擲的次數越多,求出的圓周率近似值越精確。」這就是著名的「蒲豐試驗」。
3、數學魔術家
1981年的一個夏日,在印度舉行了一場心算比賽。表演者是印度的一位37歲的婦女,她的名字叫沙貢塔娜。當天,她要以驚人的心算能力,與一台先進的電子計算機展開競賽。
工作人員寫出一個201位的大數,讓求這個數的23次方根。運算結果,沙貢塔娜只用了50秒鍾就向觀眾報出了正確的答案。而計算機為了得出同樣的答數,必須輸入兩萬條指令,再進行計算,花費的時間比沙貢塔娜要多得多。
這一奇聞,在國際上引起了轟動,沙貢塔娜被稱為「數學魔術家」。