導航:首頁 > 數字科學 > 數學中有哪些式子

數學中有哪些式子

發布時間:2022-01-31 13:33:45

㈠ 高中數學有哪些式子等於一

同一個角度,餘弦的平方加上正弦的平方=1 還有就是兩根直線垂直,那麼他們斜率之積也=1 希望可以幫助你。

㈡ 初一數學探索規律有哪些常用式子

n平方
2n+1或2n-1
2n
n(n+1)/2
n(n-1)/2
(-1)的n次方*
上面中的一個式子
(-1)的n+1次方*上面中的一個式子
還有n的平方
-
1、
n平方
+1等等。
其實有多少這樣的式子並不重要,重要的是要會去發現這些規律。通過思考找到數的內在規律。

㈢ 初中的數學公式有哪些越多越好。

數學的解題方法是隨著對數學對象的研究的深入而發展起來的。六年級的同學們很快就要小學畢業,中學的大門已經向我們敞開。為了能進一步學好數學,有必要掌握初中數學的特點尤其是解題方法。 下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。同樣這些方法也能給你們現在的學習有些幫助。請同學們把它作為資料好好保存,當然,以後全部學會弄懂,保存大腦當中再好不過了。
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法

在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

10、客觀性題的解題方法

選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。

要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。

㈣ 數學中一個式子沒有意義指什麼

類似除法中除數為0 二次根式中被開方數小於0 分式中分母為0

㈤ 數學算式有哪些

1、三角形的面積=底×高÷2。公式S=a×h÷2。

2、正方形的面積=邊長×邊長公式S=a×a。

3、長方形的面積=長×寬公式S=a×b。

4、平行四邊形的面積=底×高公式S=a×h。

5、梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2。

6、內角和:三角形的內角和=180度。

7、長方體的體積=長×寬×高公式:V=abh。

8、長方體(或正方體)的體積=底面積×高公式:V=abh。

㈥ 數學中的式子概念是什麼

算式
-
定義用運算符號聯結數字而成的式子。例如5×2÷(10-9)=10算式--在數學中,算式是指在進行數(或代數式)的計算時所列出的式子,包括數(或代替數的字母)和運算符號(四則運算、乘方、開方、階乘、排列組合等)兩部分。等式--表示相等關系的式子叫做等式。表達式--將同類型的數據(如常量、變數、函數等),用運算符號按一定的規則連接起來的、有意義的式子稱為表達式。

㈦ 等於1的數學公式有哪些等於1的數學式子很有趣

0.99999…=1

不符常識

初聽到0.99999…=1都會嚇一跳,不符「常識」,解釋之後又感覺數學的魅力所在。

還有那些這樣的例子?

再比如:

給地球和小皮球做一個緊箍的鋼環,同時給鋼環擴大1米,哪個球的平均空隙大?(答案是一樣大)

又如皮筋與螞蟻問題:

一隻螞蟻在理性彈性繩的一端,向另一端以每秒1cm的速度爬行。彈性繩同時以每秒1m的速度均勻地拉長,螞蟻能否爬到終點?
看起來不行吧?沒錯,答案是「能」。
簡單的解釋就是假設彈性繩的速度是每秒0.9cm,那麼直覺上螞蟻就能爬到終點。而彈性繩均勻拉長意味著其上總有一點的速度是每秒0.9cm,也就是說螞蟻可以爬到這個點。接下來把整個彈性繩分段就好了。

另外沒必要說高深的理論,一些簡潔平凡的結論就挺有趣了。看起來難以理解,想一想就恍然大悟。

無窮是個很無賴的概念……什麼構造出一個全體分數集(有理數)對應正整數集的……

級數裡面全體自然數之和為-1/12

微積分當中最妙又最簡潔的當屬「擺線長度等於圓直徑四倍」,這條與圓息息相關,怎麼看怎麼「無理」的一條線,長度不僅和π沒有關系,還是個漂亮的整數倍!:

當時知道「半球體積等於等底等高的圓柱切去一個圓錐的體積」的直觀解釋的時候真的是拍案稱奇。

不知道算不算幾何學,但是萊洛三角形是挺神奇的。平穩地搬運東西不一定要用圓木。

而且,不說復雜的,三角形的四心(重心、垂心、內心、外心)也很神奇啊,三種重要的線都匯聚到某個點上。

㈧ 數學里所有的式子都有各部分的名稱嗎

就是f(t)從0到x的積分等於exp(-x)-1
兩邊對x求導可得
f(x)=-exp(-x)

㈨ 數學中有哪些非常漂亮的公式

上面歐拉公式的漂亮之處就不用我解釋了吧。人們經常把它與老愛同志的E=mc^2並列為數學和物理學公式中的雙子星。歷史上的歐拉是一位全才數學家,同時也是一名虔誠的教徒,篤信上帝的存在。據說有一次俄國的葉卡捷琳娜二世邀請狄德羅來訪問她的宮廷,而狄德羅是一名不折不扣的無神論者。不久葉卡捷琳娜二世就厭倦了狄德羅那喋喋不休的無神論說教之詞,讓歐拉來好好教訓他一頓。歐拉開門見山的質問道:「e^i*pi+1=0(就是歐拉公式),所以上帝存在,請回答!」結果不懂數學的狄德羅被弄得一頭霧水,無言以對。

㈩ 高一數學集合中的一些式子是什麼意思

一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集,其中各事物叫做集合的元素或簡稱元。任何集合是它自身的子集.元素與集合的關系:
元素與集合的關系有「屬於」與「不屬於」兩種。
集合的分類:
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B} 交集: 以屬於A且屬於B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那麼因為A和B中都有1,5,所以A∩B={1,5} 。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。 圖中的陰影部分就是A∩B。無限集: 定義:集合里含有無限個元素的集合叫做無限集
有限集:令N+是正整數的全體,且Nn={1,2,3,……,n},如果存在一個正整數n,使得集合A與Nn一一對應,那麼A叫做有限集合。差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)
注:空集包含於任何集合,但不能說「空集屬於任何集合」.
補集:屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A}
空集也被認為是有限集合。
例如,全集U={1,2,3,4,5} 而A={1,2,5} 那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。
在信息技術當中,常常把CuA寫成~A。
某些指定的對象集在一起就成為一個集合,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集,真子集都具有傳遞性。
『說明一下:如果集合 A 的所有元素同時都是集合 B 的元素,則 A 稱作是 B 的子集,寫作 A �6�7 B。若 A 是 B 的子集,且 A 不等於 B,則 A 稱作是 B 的真子集,寫作 A �6�3 B。

閱讀全文

與數學中有哪些式子相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:701
乙酸乙酯化學式怎麼算 瀏覽:1369
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1007
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1366
中考初中地理如何補 瀏覽:1257
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:668
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1445
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:821
武大的分析化學怎麼樣 瀏覽:1210
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1385
化學理學哪些專業好 瀏覽:1449
數學中的棱的意思是什麼 瀏覽:1015