❶ 小學數學運算律
1、字母表達形式:
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用。
運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等。這部分內容只是用於簡便運算。
運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算。
公式在小學數學的運用中,重點是兩方面:
1.運算定律或性質用字母公式表示
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
2.幾何形體的周長、面積、體積計算公式
長方形周長:C=2(a+b)
正方形周長:C=4a
圓的周長:C=2πr,或(πd)
長方形面積:S=ab
正方形面積:S=a2
平行四邊形面積:S=ah
圓形面積:S=πr2
長方體體積:V=abc表面積S=2(ab+ac+bc)
正方體體積:V=a3表面積S=6a2
圓柱體體積:V=πr2h表面積S=2πrh+2πr2
要使學生正確理解和掌握基礎知識,教師要認真學習大綱,認真鑽研教材,正確理解大綱所要求學生掌握基礎知識的深度和廣度,並要注重在使學生理解與掌握知識的同時,培養學生的能力,能力發展了,也就更促進對知識的理解和掌握,它們之間是互相促進,密不可分的。
行程通常可以分為這樣幾類:
相遇問題:速度和×相遇時間=相遇路程;
追及問題:速度差×追及時間=路程差;
流水問題:關鍵是抓住水速對追及和相遇的時間不產生影響;
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水速=(順水速度-逆水速度)÷2
(也就是順水速度、逆水速度、船速、水速4個量中只要有2個就可求另外2個)
環形行程:抓住往返過程中不便的關系
比例應用:運用比例知識解決復雜的行程問題經常考,而且要考都不簡單。
復雜行程:包括多次相遇、火車過橋,二維行程等。
2、定義定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
3、數量關系計算公式方面
1.單價×數量=總價
2.單產量×數量=總產量
3.速度×時間=路程
4.工效×時間=工作總量
❷ 數學問題請問:數學中的運算律和運算性質有什麼區別
運算律是指在一個特定的集合內,該集合內所有元素在運算時都必須遵守的規律,也稱為運演算法則.
運算性質是指某些特定的元素集合(注意與集合中的元素的區別),按照既定的運演算法則所能達到的運算目的.比如說有的運算是求一個數值,有的運算是求一個數域等等.
❸ 運算律的定義是什麼意思
運算律是通過對一些等式的觀察、比較和分析而抽象、概括出來的運算規律。既是重要的數學規律,也是數學運算固有的性質。包括加法交換律和結合律、乘法交換律和結合律、以及乘法對於加法的分配律等等。
❹ 運算律有哪些
運算律有:加法交換律、乘法交換律、加法結合律、乘法結合律、乘法分配律、左分配律、右分配律。運算律是通過對一些等式的觀察、比較和分析而抽象、概括出來的運算規律。
運算律既是重要的數學規律,也是數學運算固有的性質。包括加法交換律和結合律、乘法交換律和結合律、以及乘法對於加法的分配律等等。運算定義和運算律是探索相關計算方法的依據。完成運算、得出結果的方法、程序或途徑,通常叫做運算方法或計算方法。
交換律
交換律是被普遍使用的一個數學名詞,指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明都需要依靠交換律。即給定集合S上的二元計算,如果對S中的任意a,b滿足a+b = b+a,則稱滿足交換律。
例如,在四則運算中,加法和乘法都滿足交換律。加法交換律是指兩個數相加,交換加數的位置,它們的和不變。即a+b=b+a。乘法交換律是指兩個數相乘,交換因數的位置,它們的積不變。即axb=bxa。另外,在集合運算中,集合的交、並、對稱差等運算都滿足交換律。
❺ 運算律的五大定律有哪些每個定律的意義是什麼
運算律即為通過對一些等式的觀察、比較和分析而抽象、概括出來的運算規律。既是重要的數學規律,也是數學運算固有的性質。運算律的五大定律有:加法結合律、加法交換律、乘法結合律、乘法交換律、乘法分配律。
運算律既是重要的數學規律,也是數學運算所固有的性質。
分類:
(1)交換律:
交換律是被普遍使用的一個數學名詞,指能改變某物的順序而不改變其最終結果。交換律為大多數數學分支中的基本性質,而且許多的數學證明都需要依靠交換律。即給定集合S上的二元計算,如果對S中的任意a,b滿足a+b = b+a,則稱滿足交換律。
例如,在四則運算中,加法和乘法都滿足交換律。加法交換律是指兩個數相加,交換加數的位置,它們的和不變。即a+b=b+a。乘法交換律是指兩個數相乘,交換因數的位置,它們的積不變。即axb=bxa。另外,在集合運算中,集合的交、並、對稱差等運算都滿足交換律。
(2)結合律:
結合律,指給定一個集合S上的二元運算,如果對於S中的任意a,b,c。有加法結合律a+b+c=(a+b)+c=a+(b+c)或乘法結合率ax(bxc) = (axb)xc,則稱其運算滿足結合律。
例如,在常見的四則運算中,加法和乘法都滿足結合律。加法結合律是指三個數相加,先把前面兩個數相加,再加第三個數,或者先把後面兩個數相加,再和第一個數相加,它們的和不變。即表示為:(a+b)+c=a+(b+c)。
乘法結合律,指三個數相乘,先把前面兩個數相乘,再乘第三個數,或者先把後面兩個數相乘,再和第一個數相乘,它們的積不變。即表示為:(axb)xc=ax(bxc)。另外,在集合運算中,集合的交、並運算都滿足結合律。
(3)分配律:
給定集合S上的兩個二元運算x和+,若對任意S中的a,b,c有cx(a+b) = (cxa)+(cxb) ,則稱運算x對運算+滿足左分配律。若對任意S中的a,b,c有(a+b)xc = (axc)+(bxc), 則稱運算x對運算+滿足右分配律。
例如,在常見的四則運算中,乘法對加法和減法都滿足分配律(即同時滿足左右分配律)。即兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘,再把兩個積相加。另外,在集合運算中,交運算對並運算滿足分配律;並運算對交運算滿足分配律;交運算對差運算滿足分配律;並運算對差運算滿足分配律。
(5)運算律屬於數學什麼領域擴展閱讀:
運算律相關公式:
加法交換律:a+b=b+a
乘法交換律:a×b=b×a
加法結合律:a+b+c=(a+b)+c=a+(b+c)
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b+c)=a×b+a×c
左分配律:cx(a+b) = (cxa)+(cxb)
右分配律:(a+b)xc = (axc)+(bxc)
❻ 小學數學四則運算屬於哪個領域
屬於混合運算的領域。
四則是指加法、減法、乘法、除法的計演算法則。在數學中,當一級運算(加減)和二級運算(乘除)同時出現在一個式子中時,它們的運算順序是先乘除,後加減,如果有括弧就先算括弧內後算括弧外,同一級運算順序是從左到右,這樣的運算叫四則運算。
❼ 什麼叫運算律
運算律包括交換律、結合律、分配律
加法交換律:a+b=b+a;
乘法交換律:a×b=b×a;
加法結合律:a+b+c=(a+b)+c=a+(b+c);
乘法結合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
(7)運算律屬於數學什麼領域擴展閱讀:
運算律既是重要的數學規律,也是數學運算所固有的性質。
1、根據運算的定義可以推導出運算律。
運算律是通過對一些等式的觀察、比較和分析而抽象、概括出來的運算規律。這個過程屬於由具體到抽象、由特殊到一般的歸納,體現了合情推理的基本特點。
但從知識邏輯來說,運算律與相關運算的定義是相伴相生的。數學家在定義四則運算的同時即需考慮「能否由定義出發合乎邏輯地推導出相應的運算律」。
2、運算定義和運算律是探索相關計算方法的依據。
完成運算、得出結果的方法、程序或途徑,通常叫做運算方法或計算方法。把運算方法所要求的操作程序和要點用相對准確、規范且比較容易理解的文本語言表述出來,或者將當前運算歸結為學生早先已經掌握的相關運算,就是所謂的「運演算法則」。
❽ 運算律有哪些
包括加法交換律和結合律、乘法交換律和結合律、以及乘法對於加法的分配律等等。運算律是通過對一些等式的觀察、比較和分析而抽象、概括出來的運算規律。既是重要的數學規律,也是數學運算固有的性質。
教學價值:
在小學數學里教學運算律,不僅具有顯性的知識與技能價值,而且具有隱性的過程與方法價值。從顯性的方面看,運算律是數與代數部分的重要知識,應用運算律進行簡便計算有助於學生不斷提高運算能力。
從隱性的方面看,通過運算律的教學,有助於學生豐富和加深對運算本身的理解,感受抽象、推理、模型等基本數學思想,同時也能獲得一些對心智成長十分有益的感悟。
以上內容參考:網路——運算律
❾ 加法運算定律在數學中有什麼用途
數學思考能讓人腦在思考問題的時候具有邏輯性,對分析問題有極大的幫助。