導航:首頁 > 數字科學 > 數學有多少分支

數學有多少分支

發布時間:2022-06-21 14:39:58

㈠ 數學分為哪幾類

數學可以分為:數論、代數學、代數幾何學、幾何學、拓撲學、數學分析、非標准分析、函數論、常微分方程、偏微分方程、動力系統、積分方程、泛函分析、計算數學、概率論數理統計學、應用統計數學、應用統計數學其他學科、運籌學、組合數學 、模糊數學、量子數學、應用數學等等。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,但當時的代數學和幾何學長久以來仍處於獨立的狀態。

代數學可以說是最為人們廣泛接受的「數學」,可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。

(1)數學有多少分支擴展閱讀

相關定理

1、李善蘭恆等式:數學家李善蘭在級數求和方面的研究成果,在國際上被命名為「李善蘭恆等式」(或李氏恆等式)。

2、華氏定理:數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。

3、蘇氏錐面:數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。

4、熊氏無窮級:數學家熊慶來關於整函數與無窮級的亞純函數的研究成果被國際數學界譽為「熊氏無窮級」。

5、陳示性類:數學家陳省身關於示性類的研究成果被國際上稱為「陳示性類」。

6、周氏坐標:數學家周煒良在代數幾何學方面的研究成果被國際數學界稱為「周氏坐標;另外還有以他命名的「周氏定理」和「周氏環」。

㈡ 數學分支有哪些

數學分支
1.算數
2.初等代數
3.高等代數
4.
數論
5.歐式幾何
6.非歐式幾何
7.解析幾何
8.微分幾何
9.代數幾何
10.射影幾何學
11.拓撲幾何學
12.拓撲學
13.分形幾何
14.微積分學
15.
實變函數論
16.概率和數量統計
17.復變函數論
18.泛函分析
19.偏微分方程
20.常微分方程21.數理邏輯
22.模糊數學
23.運籌學
24.計算數學
25.突變理論
26.數學物理學

㈢ 數學分幾大類

數學分26大類:

1、數學史

2、數理邏輯與數學基礎:演繹邏輯學(也稱符號邏輯學),證明論(也稱元數學),遞歸論 ,模型論 ,公理集合論 ,數學基礎 ,數理邏輯與數學基礎其他學科。

3、數論:初等數論,解析數論,代數數論 ,超越數論,丟番圖逼近,數的幾何,概率數論,計算數論,數論其他學科。

4、代數學:線性代數,群論,域論,李群,李代數,Kac-Moody代數,環論(包括交換環與交換代數,結合環與結合代數,非結合環與非結合代數等),模論,格論,泛代數理論,范疇論,同調代數,代數K理論,微分代數,代數編碼理論,代數學其他學科。

5、代數幾何學

6、幾何學:幾何學基礎,歐氏幾何學,非歐幾何學(包括黎曼幾何學等),球面幾何學,向量和張量分析,仿射幾何學,射影幾何學,微分幾何學,分數維幾何,計算幾何學,幾何學其他學科。

7、拓撲學:點集拓撲學,代數拓撲學,同倫論,低維拓撲學,同調論,維數論,格上拓撲學,纖維叢論,幾何拓撲學,奇點理論,微分拓撲學,拓撲學其他學科。

8、數學分析:微分學,積分學,級數論 ,數學分析其他學科。

9、非標准分析

10、函數論:實變函數論 ,單復變函數論,多復變函數論,函數逼近論 ,調和分析 ,復流形,特殊函數論,函數論其他學科。

11、常微分方程:定性理論,穩定性理論 ,解析理論 ,常微分方程其他學科。

12、偏微分方程:橢圓型偏微分方程,雙曲型偏微分方程,拋物型偏微分方程,非線性偏微分方程 ,偏微分方程其他學科。

13、動力系統:微分動力系統,拓撲動力系統,復動力系統 ,動力系統其他學科。

14、積分方

15、泛函分析:線性運算元理論,變分法,拓撲線性空間,希爾伯特空間,函數空間,巴拿赫空間 ,運算元代數,測度與積分,廣義函數論,非線性泛函分析,泛函分析其他學科。

16、計算數學:插值法與逼近論,常微分方程數值解 ,偏微分方程數值解,積分方程數值解,數值代數,連續問題離散化方法,隨機數值實驗,誤差分析,計算數學其他學科。

17、概率論:幾何概率,概率分布,極限理論,隨機過程(包括正態過程與平穩過程、點過程等) ,馬爾可夫過程,隨機分析,鞅論,應用概率論(具體應用入有關學科),概率論其他。

18、數理統計學:抽樣理論(包括抽樣分布、抽樣調查等 ),假設檢驗 ,非參數統計,方差分析 ,相關回歸分析 ,統計推斷,貝葉斯統計(包括參數估計等),試驗設計,多元分析,統計判決理論,時間序列分析,數理統計學其他學科。

19、應用統計數學:統計質量控制 ,可靠性數學 ,保險數學,統計模擬。

20、應用統計數學其他學科

21、運籌學:線性規劃,非線性規劃,動態規劃,組合最優化 ,參數規劃,整數規劃,隨機規劃 ,排隊論,對策論,也稱博弈論,庫存論,決策論,搜索論,圖論 ,統籌論,最優化,運籌學其他學科。

22、組合數學

23、模糊數學

24、量子數學

25、應用數學(具體應用入有關學科)

26、數學其他學科

㈣ 數學的分支有哪些要正確,要全。

主要分基礎數學和應用數學,基礎數學偏重於理論,包括數論,代數,幾何,拓撲,函數,泛函分析,常(偏)微分方程,數學物理方程,概率論,組合數學(這些都是本科大學數學專業學習的課程,我就是數學專業的,學的都是純理論,沒啥用,說白了就是鍛煉你的邏輯思維能力);應用數學基本上都是到研究生才學的,分的較細,包括數理統計,運籌學,控制論,計算機的數學基礎,可以在企業裡面直接用

㈤ 數學的分類和分支

分類:從縱向劃分:
1、初等數學和古代數學:這是指17世紀以前的數學。主要是古希臘時期建立的歐幾里得幾何學,古代中國、古印度和古巴比倫時期建立的算術,歐洲文藝復興時期發展起來的代數方程等。
2、變數數學:是指17--19世紀初建立與發展起來的數學。從17世紀上半葉開始的變數數學時期,可以分為兩個階段:17世紀的創建階段(英雄時代)與18世紀的發展階段(創造時代)。
3、近代數學:是指19世紀的數學。近代數學時期的19世紀是數學的全面發展與成熟階段,數學的面貌發生了深刻的變化,數學的絕大部分分支在這一時期都已經形成,整個數學呈現現出全面繁榮的景象。
4、現代數學:是指20世紀的數學。1900年德國著名數學家希爾伯特(D.
Hilbert)在世界數學家大會上發表了一個著名演講,提出了23個預測和知道今後數學發展的數學問題(見下),拉開了20世紀現代數學的序幕。
從橫向劃分:
1、基礎數學(英文:Pure
Mathematics)。又稱為理論數學或純粹數學,是數學的核心部分,包含代數、幾何、分析三大分支,分別研究數、形和數形關系。
2、應用數學。簡單地說,也即數學的應用。
3
、計算數學。研究諸如計算方法(數值分析)、數理邏輯、符號數學、計算復雜性、程序設計等方面的問題。該學科與計算機密切相關。
4、概率統計。分概率論與數理統計兩大塊。
5、運籌學與控制論。運籌學是利用數學方法,在建立模型的基礎上,解決有關人力、物資、金錢等的復雜系統的運行、組織、管理等方面所出現的問題的一門學科
分支:1.算數
2.初等代數
3.高等代數
4.
數論
5.歐式幾何
6.非歐式幾何
7.解析幾何
8.微分幾何
9.代數幾何
10.射影幾何學
11.拓撲幾何學
12.拓撲學
13.分形幾何
14.微積分學
15.
實變函數論
16.概率和數量統計
17.復變函數論
18.泛函分析
19.偏微分方程
20.常微分方程
21.數理邏輯
22.模糊數學
23.運籌學
24.計算數學
25.突變理論
26.數學物理學

㈥ 現代數學包括哪些分支分別在什麼階段學習

現代數學的三大分支是:代數、幾何、分析。數學的定義是研究集合及集合上某種結構的學科,是形式科學的一種,集合論和邏輯學是它的基礎,證明是它的靈魂。由於它與自然科學尤其是物理學關系極為密切,有時數學也被歸為自然科學六大基礎學科之一。數學中未被定義的概念是集合,其他的一切都是有定義的。數學的標准形式是公理法,即給集合和集合上的某結構下一組公理,其他的一切理論都由這組公理推導證明而來。集合上的結構就是定義在幾何元素或子集之間的一些關系,原始分為三類:描述順序關系的序結構,描述運算關系的代數結構,描述臨近關系的拓撲結構,這些結構可以互相結合成為其他一些復雜的結構,比如幾何結構,測度結構等等。由這些結構構造出來的各種集合或者說空間,就是不同數學分支研究的內容。代數學研究具有若干代數結構的集合,比如群、環、體、域、模、格、線性空間、各種內積空間等等,這些結構最初都是由初等代數,或者說初等數論和方程式論的研究中抽象出來的。代數學包括:初等代數、初等數論、高等(線性)代數、抽象代數(群論、環論、域論等)、表示論、多重線性代數、代數數論、解析數論、微分代數、組合論等等。幾何學研究具有若干幾何-拓撲結構的集合,比如仿射空間、拓撲空間、度量空間、仿射內積空間、射影空間、微分流形等。最初是由歐氏幾何發展而來。幾何學包括:初等(歐氏綜合)幾何、解析幾何、仿射幾何、射影幾何、古典微分幾何、點集拓撲、代數拓撲、微分拓撲、整體微分幾何、代數幾何等等。分析學研究帶有若干拓撲-測度的集合,以及定義在這些集合上的函數空間比如可測-測度空間、賦范空間、巴拿赫空間、希爾伯特空間、概率空間等等,由微積分發展而來。分析學包括:數學分析、常微分方程、復變函數論、實變函數論、偏微分方程、變分法、泛函分析、調和分析、概率論等等。

㈦ 數學有哪些分支學科

數學分支有:
1.. 數學史
2.. 數理邏輯與數學基礎
a.. 演繹邏輯學 亦稱符號邏輯學
b.. 證明論 亦稱元數學
c.. 遞歸論
d.. 模型論
e.. 公理集合論
f.. 數學基礎
g.. 數理邏輯與數學基礎其他學科
3.. 數論
a.. 初等數論
b.. 解析數論
c.. 代數數論
d.. 超越數論
e.. 丟番圖逼近
f.. 數的幾何
g.. 概率數論
h.. 計算數論
i.. 數論其他學科
4.. 代數學
a.. 線性代數
b.. 群論
c.. 域論
d.. 李群
e.. 李代數

㈧ 數學有哪些分支呢數學是怎樣發展的。

現時數學已包括多個分支。創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。

數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。算術(加減乘除)也自然而然地產生了。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普。歷史上曾有過許多各異的記數系統。
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
初等
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備。但尚未出現極限的概念。
高等
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展。

㈨ 數學分類有哪些

數學一般可分為初等數學和高等數學。初等數學就是高中及其以前學的數學內容,那些都是數學的皮毛;高等數學是大學開始接觸的,它是以微積分為基礎的數學研究模式,可以說微積分的發明是人類歷史上最偉大的發明,如果沒微積分的話,估計我們還生活在幾百年前。當然數學還有很多分支,比如概率和數理統計,線性代數,解析幾何,離散數學,復變函數,黎曼幾何,拓補學,還有比較新興的模糊數學(模糊數學是智能計算機的基礎)……當然還有很多,但敝人知識空間有限,只涉獵了這么點,只能幫你提供這些了。(補充一點,數學物理方程其實就是偏微分方程(組)的求解問題。它只是數學在物理上的簡單運用,我覺得應該不算是數學的一個分類)

閱讀全文

與數學有多少分支相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1004
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071