導航:首頁 > 數字科學 > 高中數學必修知識點一共有多少

高中數學必修知識點一共有多少

發布時間:2022-06-21 17:13:19

1. 高中數學必修二知識點歸納有哪些

高中數學必修二知識點如下:

1、幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

2、圓錐定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成。

3、正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

4、當直線的斜率為0°時,k=0,直線的方程是y=y1。

5、利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

2. 新課改之後高中數學的知識點一共有多少個

首先是集合...(比較簡單.不細說)
然後是函數部分(指數 對數 三角函數部分)
函數部分主要是記住圖像.性質.對稱性.奇偶性.定義域.值域等等..
這部分尤其是三角函數公式比較多..注意做題鞏固
三角函數一定要記住公式..誘導公式.2倍角.3倍角..半形..正弦餘弦和差..但是對於積化和差與和差化積不用花太多時間..不會太考
接著是立體幾何..因為三視圖是新加內容.肯定會有體現..但是不會讓你畫.注意選擇題
直線與圓..注意他們的方程性質..
演算法..新加的內容.一定會有體現.也不會讓你寫程序.注意選擇..
概率.重點是古典和幾何..有限性與無限性.然後選擇概型
必修四..三角函數前面已經說了..向量沒什麼好說的比較簡單
..必修五..等級數列和等差數列..
注意其公式多變化..做題來體現...
然後是解不等式...注意揭發多變..細心仔細不會錯哦
選修部分是必修的拓展...方法與必修相似

3. 高中數學必修1知識點總結

馬上就要高考了,現在高中數學讓很多孩子頭疼,很多的家長還有孩子都開始著急,他們都在上一些輔導班,都在採取一對一的輔導,對於一對一的教師都是可以抓住孩子的一些弱點,然後還要了解他們的學習過程,還會幫助學生制定一些計劃,幫助他們提高學習的效率,對於高中數學,一定掌握學習的方法,才可以提高成績.高中數學都要學習什麼知識?

高中數學知識

對於高中數學的一些知識,其實還是很簡單的,只要你抓住學習的方法,從中找到樂趣,讓自己喜歡上數學,對你的學習是很有幫助的,至於一對一輔導,其實還是有用的,好的老師會給你講述好的學習方法,然後讓你考一個好成績,拿到滿意的答卷.

4. 高中數學有哪些知識點

第一章 集合與函數概念
1.集合的概念及其表示意思;2.集合間的關系;3.函數的概念及其表示;4.函數性質(單調性、最值、奇偶性)
第二章 基本初等函數(I)
一.指數與對數
1.根式;2.指數冪的擴充;3.對數;4.根式、指數式、對數式之間的關系;5.對數運算性質與指數運算性質
二.指數函數與對數函數
1.指數函數與對數函數的圖像與性質;2.指數函數y=ax的關系
三.冪函數 (定義、圖像、性質)
第三章 函數的應用
一.方程的實數解與函數的零點
二.二分法
三.幾類不同增長的函數模型
四.函數模型的應用
必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當時,; 當時,; 當時,不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中.
(6)兩直線平行與垂直
當,時,

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組的一組解.
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓,

5. 高中數學必修一知識點歸納有哪些

1、對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

2、任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

3、集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

4、在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

5、集合元素的三個特性使集合本身具有了確定性和整體性。

6. 誰有高中數學必修一的全部知識點整理,一定要全.簡潔

高中數學知識點總結1.對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。中元素各表示什麼?注重藉助於數軸和文氏圖解集合問題。空集是一切集合的子集,是一切非空集合的真子集。3.注意下列性質:(3)德摩根定律:4.你會用補集思想解決問題嗎?(排除法、間接法)的取值范圍。6.命題的四種形式及其相互關系是什麼?(互為逆否關系的命題是等價命題。)原命題與逆否命題同真、同假;逆命題與否命題同真同假。7.對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?(一對一,多對一,允許B中有元素無原象。)8.函數的三要素是什麼?如何比較兩個函數是否相同?(定義域、對應法則、值域)9.求函數的定義域有哪些常見類型?10.如何求復合函數的定義域?義域是_____________。11.求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?12.反函數存在的條件是什麼?(一一對應函數)求反函數的步驟掌握了嗎?(①反解x;②互換x、y;③註明定義域)13.反函數的性質有哪些?①互為反函數的圖象關於直線y=x對稱;②保存了原來函數的單調性、奇函數性;14.如何用定義證明函數的單調性?(取值、作差、判正負)如何判斷復合函數的單調性?∴……)15.如何利用導數判斷函數的單調性?值是()A.0B.1C.2D.3∴a的最大值為3)16.函數f(x)具有奇偶性的必要(非充分)條件是什麼?(f(x)定義域關於原點對稱)注意如下結論:(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。17.你熟悉周期函數的定義嗎?函數,T是一個周期。)如:18.你掌握常用的圖象變換了嗎?注意如下「翻折」變換:19.你熟練掌握常用函數的圖象和性質了嗎?的雙曲線。應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程②求閉區間[m,n]上的最值。③求區間定(動),對稱軸動(定)的最值問題。④一元二次方程根的分布問題。由圖象記性質!(注意底數的限定!)利用它的單調性求最值與利用均值不等式求最值的區別是什麼?20.你在基本運算上常出現錯誤嗎?21.如何解抽象函數問題?(賦值法、結構變換法)22.掌握求函數值域的常用方法了嗎?(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)如求下列函數的最值:23.你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?24.熟記三角函數的定義,單位圓中三角函數線的定義25.你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?(x,y)作圖象。27.在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。28.在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?29.熟練掌握三角函數圖象變換了嗎?(平移變換、伸縮變換)平移公式:圖象?30.熟練掌握同角三角函數關系和誘導公式了嗎?「奇」、「偶」指k取奇、偶數。A.正值或負值B.負值C.非負值D.正值31.熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?理解公式之間的聯系:應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)具體方法:(2)名的變換:化弦或化切(3)次數的變換:升、降冪公式(4)形的變換:統一函數形式,注意運用代數運算。32.正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?(應用:已知兩邊一夾角求第三邊;已知三邊求角。)33.用反三角函數表示角時要注意角的范圍。34.不等式的性質有哪些?答案:C35.利用均值不等式:值?(一正、二定、三相等)注意如下結論:36.不等式證明的基本方法都掌握了嗎?(比較法、分析法、綜合法、數學歸納法等)並注意簡單放縮法的應用。(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)38.用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始39.解含有參數的不等式要注意對字母參數的討論40.對含有兩個絕對值的不等式如何去解?(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)證明:(按不等號方向放縮)42.不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)43.等差數列的定義與性質0的二次函數)項,即:44.等比數列的定義與性質46.你熟悉求數列通項公式的常用方法嗎?例如:(1)求差(商)法解:[練習](2)疊乘法解:(3)等差型遞推公式[練習](4)等比型遞推公式[練習](5)倒數法47.你熟悉求數列前n項和的常用方法嗎?例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。解:[練習](2)錯位相減法:(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。[練習]48.你知道儲蓄、貸款問題嗎?△零存整取儲蓄(單利)本利和計算模型:若每期存入本金p元,每期利率為r,n期後,本利和為:△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足p——貸款數,r——利率,n——還款期數49.解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不50.解排列與組合問題的規律是:相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。如:學號為1,2,3,4的四名學生的考試成績則這四位同學考試成績的所有可能情況是()A.24B.15C.12D.10解析:可分成兩類:(2)中間兩個分數相等相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。∴共有5+10=15(種)情況51.二項式定理性質:(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第表示)52.你對隨機事件之間的關系熟悉嗎?的和(並)。(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。(6)對立事件(互逆事件):(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。53.對某一事件概率的求法:分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生如:設10件產品中有4件次品,6件正品,求下列事件的概率。(1)從中任取2件都是次品;(2)從中任取5件恰有2件次品;(3)從中有放回地任取3件至少有2件次品;解析:有放回地抽取3次(每次抽1件),∴n=103而至少有2件次品為「恰有2次品」和「三件都是次品」(4)從中依次取5件恰有2件次品。解析:∵一件一件抽取(有順序)分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。54.抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。55.對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。要熟悉樣本頻率直方圖的作法:(2)決定組距和組數;(3)決定分點;(4)列頻率分布表;(5)畫頻率直方圖。如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。56.你對向量的有關概念清楚嗎?(1)向量——既有大小又有方向的量。在此規定下向量可以在平面(或空間)平行移動而不改變。(6)並線向量(平行向量)——方向相同或相反的向量。規定零向量與任意向量平行。(7)向量的加、減法如圖:(8)平面向量基本定理(向量的分解定理)的一組基底。(9)向量的坐標表示表示。57.平面向量的數量積數量積的幾何意義:(2)數量積的運演算法則[練習]答案:答案:2答案:58.線段的定比分點※.你能分清三角形的重心、垂心、外心、內心及其性質嗎?59.立體幾何中平行、垂直關系證明的思路清楚嗎?平行垂直的證明主要利用線面關系的轉化:線面平行的判定:線面平行的性質:三垂線定理(及逆定理):線面垂直:面面垂直:60.三類角的定義及求法(1)異面直線所成的角θ,0°<θ≤90°(2)直線與平面所成的角θ,0°≤θ≤90°(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)三類角的求法:①找出或作出有關的角。②證明其符合定義,並指出所求作的角。③計算大小(解直角三角形,或用餘弦定理)。[練習](1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。①求BD1和底面ABCD所成的角;②求異面直線BD1和AD所成的角;③求二面角C1—BD1—B1的大小。(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)61.空間有幾種距離?如何求距離?點與點,點與線,點與面,線與線,線與面,面與面間距離。將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。如:正方形ABCD—A1B1C1D1中,棱長為a,則:(1)點C到面AB1C1的距離為___________;(2)點B到面ACB1的距離為____________;(3)直線A1D1到面AB1C1的距離為____________;(4)面AB1C與面A1DC1的距離為____________;(5)點B到直線A1C1的距離為_____________。62.你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?正稜柱——底面為正多邊形的直稜柱正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。正棱錐的計算集中在四個直角三角形中:它們各包含哪些元素?63.球有哪些性質?(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。積為()答案:A64.熟記下列公式了嗎?(2)直線方程:65.如何判斷兩直線平行、垂直?66.怎樣判斷直線l與圓C的位置關系?圓心到直線的距離與圓的半徑比較。直線與圓相交時,注意利用圓的「垂徑定理」。67.怎樣判斷直線與圓錐曲線的位置?68.分清圓錐曲線的定義70.在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)71.會用定義求圓錐曲線的焦半徑嗎?如:通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。72.有關中點弦問題可考慮用「代點法」。答案:73.如何求解「對稱」問題?(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。75.求軌跡方程的常用方法有哪些?注意討論范圍。(直接法、定義法、轉移法、參數法)76.對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

7. 高中數學必修五知識點歸納有哪些

高中數學必修五知識點歸納如下:

1、偶次方根的被開方數不小於零。

2、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。

3、若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當於求函數的定義域。

4、反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可採用此法求得。

5、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便於判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式。

8. 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

閱讀全文

與高中數學必修知識點一共有多少相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1004
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071