『壹』 數學建模大賽0基礎大約需要准備多久
需要准備三個月時間最少,因為需要熟悉比賽的整個流程,還要提高相對的理論知識儲備。
賽前准備:
1、堅定參加數學建模競賽的決心,擺正競賽的目的。參見任何一種競賽,拿到名次真的是其次的事情,關鍵是能通過競賽學到知識,交到朋友。所以擺正態度,堅定決心。
2、組隊。數學建模競賽一般要求三人組成一隊,以隊為單位參見競賽,所以找到志同道合的又很給力的隊友,是比賽成功關鍵的一步。在選擇隊友時,最好考慮學習能力、積極性、耐性等多個因素,如果你的隊友半途而廢了,真的會很讓人生氣。
3、做好分工。組隊結束後,就得根據每個人的特點做分工了。數學建模就是一個考察分工協作的競賽,好的分工做起事來回事半功倍。三個人一般分工是這樣的,一個主論文、一個主編程、一個主演算法。根據隊員的特點,開會討論確定分工。
4、比賽報名,非常重要的步驟。只有報名了,才有資格參加競賽。根據你選擇的競賽,關注競賽官網報名信息,及時報名。
全國大學生數學建模競賽:
全國大學生數學建模競賽創辦於1992年,每年一屆,已成為全國高校規模最大的基礎性學科競賽,也是世界上規模最大的數學建模競賽。
2018年,來自全國34個省/市/區(包括香港、澳門和台灣)及美國和新加坡的1449所院校/校區、42128個隊(本科38573隊、專科3555隊)、超過12萬名大學生報名參加本項競賽。
『貳』 如何准備大學生數學建模比賽
准備方式:
1. 在組隊的時候需要考慮隊伍成員的多元化,盡量和不同專業、不同特長的同學組隊。因為同系同專業甚至同班的話大家的專業知識一樣,如果碰上專業知識以外的背景那會比較麻煩的。所以如果是不同專業組隊則有利的多。因為數學建模題有可能出現在各個領域,這也是數學建模適合各個專業學生參加的原因所在,也是數學建模競賽賽事的魅力所在。
2. 在數學建模競賽中,每個人都有自己的任務,因此每個人都應該明確自己的定位,根據自己的特點選擇隊友。眾所周知,數學建模競賽題主要是依靠數學和計算機來完成,所以在組隊的時候需要優先考慮隊中有這方面才能的人。因此在競賽中有兩種人是必需的:一個是對建模很熟悉、對各類演算法理論熟悉,在了解問題背景後能建立模型,設計求解演算法,一般來說這樣的任務對專業沒有特別要求,適合各個專業的同學參加,因為這項任務所需要的能力是可以鍛煉的,通過平時的學習以及數學建模的培訓,大家可以達到一定的水平;另一個是能將演算法編製程序予以實現,求得數學問題的解,這項任務對計算機要求比較高,一般適合信息學院或軟體學院的學生參加,這點是非常重要的,因為很多隊伍都存在建模與求解之間脫節的情況,在比賽中需要建模與求解相互配合,這樣才能獲得好成績。第三個人一般要從寫作角度考慮,就是主要承擔寫作任務,從專業方面看有沒有特別的要求,當然最好來自不同專業的學生參加,在數學建模中各種背景的問題都會出現,所以由各種不同專業學生組成的團隊可以彌補專業知識方面的不足。如果是參加美國大學生數學建模競賽的,那麼英語能力又是必須考慮的,特別要有一個英語寫作能力強的同學來擔任寫作。
3. 最後在選擇隊員時還有一點非常重要,就是一定要選擇和自己志同道合的同學加入自己的隊伍。如果兩個人合不來,無論各自的能力有多強,在競賽中把時間浪費在無謂的爭論中,也是無法獲得好成績的。這其實也就是前面一直在說的三個人一定要有團隊各做精神。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述,也就是建立數學模型。然後用通過計算得到的結果來解釋實際問題,並接受實際的檢驗,這個建立數學模型的全過程就稱為數學建模。
『叄』 數學建模應該進行哪些准備
數學建模需要的知識比較零散,比較多!首先你需要知道大多數的模型及其相關的知識。不過你要比賽的話,不一定數學非常好,後面回答你。最好隊相應的解決數學問題的應用軟體有一定的了解。
說到建模比賽和數學建模有些不一樣。首先說一下我們國家的大學生數學建模比賽吧!
大約在每年的9月份的第二個周末進行,為期三天。需要三個同學組成一個隊,在三天的比賽期限內,選擇一個題目進行做答。最後的解答以論文形式上交所在省的數學建模委員會評審,然後在參加國家的評審。
按照我代隊的經驗,這三個同學應該一個數學方面的知識和感覺好一些(不妨設為同學A),一個計算既要很強(不妨設為同學B),另外一個文筆稍微好一些(不妨設為同學C)。同學A負責對題目的數學解題思路和框架以及數學演算法的設計,並在數學模型的選擇上有很大的決定權,同學B負責把同學A的想法進行計算機實現,要快,要求它具有很強的計算機應用能力,同學C負責將前面兩位同學的工作轉化為論文,很好的表述出來。當然,一組的三個同學一起負責對題目的理解。
應該說數學建模比賽要求的是不同能力同學的最優化組合問題,並不要求學歷,但是要求最少具備大學二年級的數學水平。也就是說基本學過高等數學、線性代數和概率統計才行,最好選修果數學建模。
對於怎樣參加,每個學校做法不盡相同。
有的學校是在每年的上半年進行全校選拔賽,脫穎而出的隊參加全國比賽,有的學校是推薦制,每個學院推薦同學進行組隊參賽。還有的幾所大學聯合起來搞一個地區級的數學建模比賽,等等。不一而足。
希望你能參加數學建模比賽,並取得好成績!
『肆』 如何准備:大學生數學建模大賽
1、學好數學知識,包括微積分,線性代數,概率論,復變函數,數理方程,隨機過程,離散數學,圖論等等,畢竟解決的是數學問題,數學基本功不可少。
2、學好軟體操作,如matlab,lingo等。
3、多看些優秀比賽論文,如果可以多練練。
『伍』 初學者,數學建模需要准備些什麼東西
數學建模應當掌握的十類演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算 法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法) 2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要 處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具) 3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題 屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現) 4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉 及到圖論的問題可以用這些方法解決,需要認真准備) 5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計 中比較常用的方法,很多場合可以用到競賽中) 6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是 用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實 現比較困難,需慎重使用) 7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽 題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好 使用一些高級語言作為編程工具) 8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只 認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非 常重要的) 9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常 用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調 用) 10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該 要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)
數學建模資料
競賽參考書
l、中國大學生數學建模競賽,李大潛主編,高等教育出版社(1998). 2、大學生數學建模競賽輔導教材,(一)(二)(三),葉其孝主編,湖南教育 出版社(1993,1997,1998). 3、數學建模教育與國際數學建模競賽 《工科數學》專輯,葉其孝主編, 《工科數學》雜志社,1994).
國內教材、叢書
1、數學模型,姜啟源編,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年國家教委舉辦的第二屆全國優秀教材評選中獲"全國優秀教材獎"). 2、數學模型與計算機模擬,江裕釗、辛培情編,電子科技大學出版社,(1989). 3、數學模型選談(走向數學從書),華羅庚,王元著,王克譯,湖南教育出版社;(1991). 4、數學建模--方法與範例,壽紀麟等編,西安交通大學出版社(1993). 5、數學模型,濮定國、 田蔚文主編,東南大學出版社(1994). 6..數學模型,朱思銘、李尚廉編,中山大學出版社,(1995) 7、數學模型,陳義華編著,重慶大學出版社,(1995) 8、數學模型建模分析,蔡常豐編著,科學出版社,(1995). 9、數學建模競賽教程,李尚志主編,江蘇教育出版社,(1996). 10、數學建模入門,徐全智、楊晉浩編,成都電子科大出版社,(1996). 11、數學建模,沈繼紅、施久玉、高振濱、張曉威編,哈爾濱工程大學出版社,(1996). 12、數學模型基礎,王樹禾編著,中國科學技術大學出版社,(1996). 13、數學模型方法,齊歡編著,華中理工大學出版社,(1996). 14、數學建模與實驗,南京地區工科院校數學建模與工業數學討論班編,河海大學 出版社,(1996). 15、數學模型與數學建模,劉來福、曾文藝編,北京師范大學出版杜(1997). 16. 數學建模,袁震東、洪淵、林武忠、蔣魯敏編,華東師范大學出版社. 17、數學模型,譚永基,俞文吡編,復旦大學出版社,(1997). 18、數學模型實用教程,費培之、程中瑗層主編,四川大學出版社,(1998). 19、數學建模優秀案例選編(工科數學基地建設叢書),汪國強主編,華南理工大學出版社,(1998). 20、經濟數學模型(第二版)(工科數學基地建設叢書),洪毅、賀德化、昌志華 編著,華南理工大學出版社,(1999). 21、數學模型講義,雷功炎編,北京大學出版社(1999). 22、數學建模精品案例,朱道元編著,東南大學出版社,(1999), 23、問題解決的數學模型方法,劉來福,曾文藝編著、北京師范大學出版社,(1999). 24、數學建模的理論與實踐,吳翔,吳孟達,成禮智編著,國防科技大學出版社, (1999). 25、數學建模案例分析,白其嶺主編,海洋出版社,(2000年,北京). 26、數學實驗(高等院校選用教材系列),謝雲蓀、張志讓主編,科學出版社,(2000). 27、數學實驗,傅鵬、龔肋、劉瓊蓀,何中市編,科學出版社,(2000). 28、數學建模與數學實驗,趙靜、但琦編,高等教育出版社,(2000).
國外參考書(中譯本)
1、數學模型引論, E.A。Bender著,朱堯辰、徐偉宣譯,科學普及出版社(1982). 2、數學模型,[門]近藤次郎著,官榮章等譯,機械工業出版社,(1985). 3、微分方程模型,(應用數學模型叢書第1卷),[美]W.F.Lucas主編,朱煜民等 譯,國防科技大學出版社,(1988). 4、政治及有關模型,(應用數學模型叢書第2卷),[美W.F.Lucas主編,王國秋 等譯,國防科技大學出版社,(1996). 5、離散與系統模型,(應用數學模型叢書第3卷),[美w.F.Lucas主編,成禮智 等譯,國防科技大學出版社,(1996). 6、生命科學模型,(應用數學模型叢書第4卷),[美1W.F.Lucas主編,翟曉燕等 譯,國防科技大學出版社,(1996). 7、模型數學--連續動力系統和離散動力系統,[英1H.B.Grif6ths和A.01dknow 著,蕭禮、張志軍編譯,科學出版社,(1996). 8、數學建模--來自英國四個行業中的案例研究,(應用數學譯叢第4號), 英]D.Burglles等著,葉其孝、吳慶寶譯,世界圖書出版公司,(1997)
專業性參考書
(這方面書籍很多,僅列幾本供參考) : 1、水環境數學模型,[德]W.KinZE1bach著,楊汝均、劉兆昌等編纂,中國建築工 業出版社,(1987). 2、科技工程中的數學模型,堪安琦編著,鐵道出版社(1988) 3、生物醫學數學模型,青義學編著,湖南科學技術出版杜(1990). 4、農作物害蟲管理數學模型與應用,蒲蟄龍主編,廣東科技出版社(1990). 5、系統科學中數學模型,歐陽亮編著, E山東大學出版社,(1995). 6、種群生態學的數學建模與研究,馬知恩著,安徽教育出版社,(1996) 7、建模、變換、優化--結構綜合方法新進展,隋允康著,大連理工大學出版社, (1986) 8、遺傳模型分析方法,朱軍著,中國農業出版社(1997). (中山大學數學系王壽松編輯,2001年4月)
過程
模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用
應用方式因問題的性質和建模的目的而異。
1、努力學習數學知識,完善自己的知識體系,尤其是與數學相關的知識體系,比如高等數學、工程數學和應用數學的相關知識;
2、擴充自己的知識面,你可以看到很多賽題都是很現實的社會熱點問題,相關的背景知識是非常必要的;
3、多看一些案例分析的教程,在學習案例分析時的注意點是:如何考慮現實問題中的各個因素,綜合運用所學知識,建立適當的模型;如何進行模型的優化;如何求解模型;如何解釋模型的解。
還要逐步去理解數學建模中最難的三個問題,1、如何用學到的數學思想來表述所面對的問題,所謂的建模。2、應用學到的數學知識解剛剛建立的數學模型,並進行優化。3、將剛剛得到的數學上的解解釋為現實問題中的現象或者是方法。這三個過程體現了一個「現實——>數學——>現實」的一個過程。這其實就是最難的地方。這需要你首先了解面臨的實際問題,然後從現實中轉入數學,再從數學中跳出來回到現實。
4、說到matlab,我建議你借一本matlab手冊做參考書就行了!畢竟matlab只是實現你數學模型的基礎,這不是說matlab不重要,其實matlab也很重要!
祝你快樂!
『陸』 大學生數學建模競賽最佳的專業搭配是怎樣的呢整個組需要哪些知識
這個還是看個人吧,理工科和經管類專業都可以,只要跟隊友聊的來就行,性格相投比專業知識更重要。因為數學建模基本都是現學現賣的,有些專業可能比較容易接受新知識,但整體來講差不多。
個人建議三個人當中至少有一個計算機或者軟體專業的,也就是至少有一個程序員,負責編程工作。剩下的兩個我覺得沒必要太過強求專業,各有優勢吧。
因為專業既不是好成績的充分條件,也不是必要條件。如果非要我這樣來講,那肯定是理工科的專業更合適,雖然無比寡淡,但卻是事實。按獲獎概率來說,就這樣。
另外美賽,如果不是學霸,千萬別為了寫論文找英文專業的同學做隊友,比賽後期會很難過。
其實,這個問題跟專業關系不大,關鍵看你的團隊是否有足夠的進取心、強大的自學能力和足夠的知識儲備,這三個因素按照優先順序排序也就是這樣。
足夠的進取心:
指導建模比賽多年,有三分之一的同學在形式上或者實際上會退出比賽,他們已經被比賽蹂躪的體無完膚了。當然,這其中有很多好學生是躺槍的,本以為可以一起共同進步,結果被沒有進取心的學生拖了後腿。貌似無疾而終,實際上是自己當年組隊沒選好人。
『柒』 如何學好數學建模
數學建模是使用數學模型解決實際問題。
對數學的要求其實不高。
我上大一的時候,連高等數學都沒學就去參賽,就能得獎。
可見數學是必需的,但最重要的是文字表達能力
回答者:抉擇415 - 童生 一級 3-13 14:48
數學模型
數學模型是對於現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構。
簡單地說:就是系統的某種特徵的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數、圖形、代數方程、微分方程、積分方程、差分方程等)來描述(表述、模擬)所研究的客觀對象或系統在某一方面的存在規律。
數學建模
數學建模是利用數學方法解決實際問題的一種實踐。即通過抽象、簡化、假設、引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解。
數學建模將各種知識綜合應用於解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。
數學建模的一般方法和步驟
建立數學模型的方法和步驟並沒有一定的模式,但一個理想的模型應能反映系統的全部重要特徵:模型的可靠性和模型的使用性。建模的一般方法:
機理分析:根據對現實對象特性的認識,分析其因果關系,找出反映內部機理的規律,所建立的模型常有明確的物理或現實意義。
測試分析方法:將研究對象視為一個「黑箱」系統,內部機理無法直接尋求,通過測量系統的輸入輸出數據,並以此為基礎運用統計分析方法,按照事先確定的准則在某一類模型中選出一個數據擬合得最好的模型。 測試分析方法也叫做系統辯識。
將這兩種方法結合起來使用,即用機理分析方法建立模型的結構,用系統測試方法來確定模型的參數,也是常用的建模方法。
在實際過程中用那一種方法建模主要是根據我們對研究對象的了解程度和建模目的來決定。機理分析法建模的具體步驟大致如下:
1、 實際問題通過抽象、簡化、假設,確定變數、參數;
2、 建立數學模型並數學、數值地求解、確定參數;
3、 用實際問題的實測數據等來檢驗該數學模型;
4、 符合實際,交付使用,從而可產生經濟、社會效益;不符合實際,重新建模。
數學模型的分類:
1、 按研究方法和對象的數學特徵分:初等模型、幾何模型、優化模型、微分方程模型、圖論模型、邏輯模型、穩定性模型、統計模型等。
2、 按研究對象的實際領域(或所屬學科)分:人口模型、交通模型、環境模型、生態模型、生理模型、城鎮規劃模型、水資源模型、污染模型、經濟模型、社會模型等。
數學建模需要豐富的數學知識,涉及到高等數學,離散數學,線性代數,概率統計,復變函數等等 基本的數學知識
同時,還要有廣泛的興趣,較強的邏輯思維能力,以及語言表達能力等等
一般大學進行數學建模式從大二下學期開始,一般在九月份開始競賽,一般三天時間,三到四人一組,合作完成!!!
數模網 :http://www.shumo.com/main/
『捌』 數學建模競賽要如何准備
1)軟體專業的除熟練建模用的matlab、lingo一些軟體的語言外,還應多准備一些數學知識。2)兩數學系的人則應多看一些有關模型的書籍,如姜起源的數學模型,要對所有模型都能夠有所了解,並能夠理解,在競賽時能夠應用即可,在競賽時還會搜集相關模型的文獻進行深入研究。3)有所側重的應有一、兩人能夠使用公式編輯器、圖形製作、excel的使用、word排版,因為模型中會涉及到大量的公式輸入。4)在平時可以完整的練習一兩次,練習時就要完全按競賽要求做,語言盡量精煉、科學。
競賽時能夠做出一兩步既能得省內獎,貴在堅持。 全國大學生數學建模競賽章程(2008年)第一條 總則全國大學生數學建模競賽(以下簡稱競賽)是教育部高等教育司和中國工業與應用數學學會共同主辦的面向全國大學生的群眾性科技活動,目的在於激勵學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際問題的綜合能力,鼓勵廣大學生踴躍參加課外科技活動,開拓知識面,培養創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革。第二條 競賽內容競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過高等學校的數學課程。題目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一篇包括模型的假設、建立和求解、計算方法的設計和計算機實現、結果的分析和檢驗、模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標准。第三條 競賽形式、規則和紀律 1.全國統一競賽題目,採取通訊競賽方式,以相對集中的形式進行。2.競賽每年舉辦一次,一般在某個周末前後的三天內舉行。3.大學生以隊為單位參賽,每隊3人(須屬於同一所學校),專業不限。競賽分本科、專科兩組進行,本科生參加本科組競賽,專科生參加專科組競賽(也可參加本科組競賽),研究生不得參加。每隊可設一名指導教師(或教師組),從事賽前輔導和參賽的組織工作,但在競賽期間必須迴避參賽隊員,不得進行指導或參與討論,否則按違反紀律處理。4.競賽期間參賽隊員可以使用各種圖書資料、計算機和軟體,在國際互聯網上瀏覽,但不得與隊外任何人(包括在網上)討論。5.競賽開始後,賽題將公布在指定的網址供參賽隊下載,參賽隊在規定時間內完成答卷,並准時交卷。6.參賽院校應責成有關職能部門負責競賽的組織和紀律監督工作,保證本校競賽的規范性和公正性。 第四條 組織形式1.競賽由全國大學生數學建模競賽組織委員會(以下簡稱全國組委會)主持,負責每年發動報名、擬定賽題、組織全國優秀答卷的復審和評獎、印製獲獎證書、舉辦全國頒獎儀式等。2.競賽分賽區組織進行。原則上一個省(自治區、直轄市)為一個賽區,每個賽區應至少有6所院校的20個隊參加。鄰近的省可以合並成立一個賽區。每個賽區建立組織委員會(以下簡稱賽區組委會),負責本賽區的宣傳發動及報名、監督競賽紀律和組織評閱答卷等工作。未成立賽區的各省院校的參賽隊可直接向全國組委會報名參賽。3.設立組織工作優秀獎,表彰在競賽組織工作中成績優異或進步突出的賽區組委會,以參賽校數和隊數、征題的數量和質量、無違紀現象、評閱工作的質量、結合本賽區具體情況創造性地開展工作以及與全國組委會的配合等為主要標准。第五條 評獎辦法1.各賽區組委會聘請專家組成評閱委員會,評選本賽區的一等、二等獎(也可增設三等獎),獲獎比例一般不超過三分之一,其餘凡完成合格答卷者可獲得成功參賽證書。2.各賽區組委會按全國組委會規定的數量將本賽區的優秀答卷送全國組委會。全國組委會聘請專家組成全國評閱委員會,按統一標准從各賽區送交的優秀答卷中評選出全國一等、二等獎。3.全國與各賽區的一、二等獎均頒發獲獎證書。4.對違反競賽規則的參賽隊,一經發現,取消參賽資格,成績無效。對所在院校要予以警告、通報,直至取消該校下一年度參賽資格。對違反評獎工作規定的賽區,全國組委會不承認其評獎結果。第六條 異議期制度1.全國(或各賽區)獲獎名單公布之日起的兩個星期內,任何個人和單位可以提出異議,由全國組委會(或各賽區組委會)負責受理。 2.受理異議的重點是違反競賽章程的行為,包括競賽期間教師參與、隊員與他人討論,不公正的評閱等。對於要求將答卷復評以提高獲獎等級的申訴,原則上不予受理,特殊情況可先經各賽區組委會審核後,由各賽區組委會報全國組委會核查。 3.異議須以書面形式提出。個人提出的異議,須寫明本人的真實姓名、工作單位、通信地址(包括聯系電話或電子郵件地址等),並有本人的親筆簽名;單位提出的異議,須寫明聯系人的姓名、通信地址(包括聯系電話或電子郵件地址等),並加蓋公章。全國組委會及各賽區組委會對提出異議的個人或單位給予保密。 4.與受理異議有關的學校管理部門,有責任協助全國組委會及各賽區組委會對異議進行調查,並提出處理意見。全國組委會或各賽區組委會應在異議期結束後兩個月內向申訴人答復處理結果。 第七條 經費1.參賽隊所在學校向所在賽區組委會交納參賽費。2.賽區組委會向全國組委會交納一定數額的經費。3.各級教育管理部門的資助。4.社會各界的資助。第八條 解釋與修改本章程從2008年開始執行,其解釋和修改權屬於全國組委會。
『玖』 怎樣准備全國大學生數學建模競賽
以我的參賽經歷:
首先,要學好高等數學(數學分析)、線性代數、概率論,這三門課在大一、二分別會開課,(這里的學好是會較為熟練的計算書上習題即可,建模比賽時真正的問題不是復雜的計算理論,而是數學軟體的基礎和創新能力和論文水平)。
其次,掌握軟體Matlab(數值計算功能非常強大)(薛定宇的書《高等應用數學問題Matlab求解》 講得很好)和Maple(符號運算很強大,簡單學一下),
還可以看看spss軟體(主要用於統計分析)。 (這里你無法熟練使用所有函數,但一定要做到能在很短時間內用互聯網和「help」查找需要的函數,比賽時很重要!!!!)
最後,你要考慮你比賽時的團隊組成,找一些優勢不同的。括弧里是我們隊的組合(有一個會寫論文且創新性極強的(好像是我)負責提出模型框架和寫論文;有一個計算軟體極強的,可以將提出的框架進行計算;另一個人要理智檢測出前兩個人的細小錯誤)。切記切記!!
參考書目:薛定宇的書《高等應用數學問題Matlab求解》;姜啟源的《數學模型》其他軟體的書可以問一下教數學的老師,他們都用。
『拾』 大學生數學建模 應該怎樣准備
數學建模需要綜合的數學知識,需要團隊協作,最好各個方面(工,商,農,醫,生活實際)都有涉獵,做題也是必不可少的.基礎也是非常重要的,思維要縝密,方法要符合實際,還要對結果進行推廣以及穩定性和誤差分析.總之,要想學好不是那麼容易的!