導航:首頁 > 數字科學 > 什麼是系統的數學模型

什麼是系統的數學模型

發布時間:2022-06-22 10:25:44

Ⅰ 系統的數學模型是指什麼

述內容數據模型包括三個部分:一個數據結構,數據操縱,數據約束.
1)的數據結構:該數據模型的數據結構描述了數據類型,內容,等之間的數據鏈路的性質.數據結構是基於所述數據結構中的數據模型,數據操縱和限制的基礎.具有不同的操作和約束不同的數據結構.
2)操作數據:數據模型描述了數據操縱操作類型和操作方式上的相應的數據結構.
3)數據約束:數據模型約束語法,意思是描述內的數據,對它們之間的約束和依賴關系,以及動態數據的規則的結構之間的主要接觸中的數據,以確保該數據是正確的,有效的和相容性.即,概念數據模型,邏輯數據模型,物理數據模型:根據不同的應用水平分為三種類型
數據模型.
1,概念數據模型(概念數據模型):短期概念模型是一個面向用戶的資料庫模型來實現世界各地,主要用來描述世界的結構,它允許資料庫設計者在初始階段的概念化的設計,擺脫計算機系統和資料庫管理系統的具體技術問題,並著眼於數據分析和之間的其它特定的數據管理系統中的數據鏈路(資料庫管理系統,被稱為DBMS)中是獨立的.概念數據模型必須由一個邏輯數據模型來代替所用的資料庫管理系統來實現.
2,邏輯數據模型(邏輯數據模型):被稱為一個數據模型,這是從該資料庫的用戶模型所示,資料庫管理系統是專門由數據模型的支持,例如網的數據模型(網路數據模型),層次數據模型(層次數據模型)等.這種模式不僅對用戶的需求,同時也為系統,主要用於資料庫管理系統(DBMS)的實現.
3中,物理數據模型(物理數據模型):縮寫物理模型是一個計算機模型的物理表示,描述了存儲介質上的數據結構,它不僅涉及特定的DBMS中,而且還與操作系統和硬體有關.每個邏輯數據模型起到了實現相應的物理數據模型.DBMS以確保其獨立性和可移植性,大部分的工作,實現了物理數據模型還可以自動完成,設計師只設計指標的特殊結構,聚集.
概念數據模型是最常用的是ER模型,ER模型,面向對象的模型和謂詞模型的擴展.在邏輯數據類型是最常用的分層模型時,網格模型,關系模型.

Ⅱ 自動控制系統中數學模型的作用及常見形式有哪些

控制系統的數學模型是描述系統內部物理量(或變數)之間關系的數學表達式。在靜態條件下(即變數各階導數為零),描述變數之間關系的代數方程叫靜態數學模型;而描述變數各階導數之間關系的微分方程叫數學模型。如果已知輸入量及變數的初始條件,對微分方程求解就可以得到系統輸出量的表達式,並由此可對系統進行性能分析。因此,建立控制系統的數學模型是分析和設計控制系統的首要工作
建立控制系統數學模型的方法有分析法和實驗法兩種。分析法是對系統各部分的運動機理進行分析,根據它們所依據的物理規律或化學規律分別列寫相應的運動方程。例如,電學中有基爾霍夫定律,力學中有牛頓定律,熱力學中有熱力學定律等。實驗法是人為地給系統施加某種測試信號,記錄其輸出響應,並用適當的數學模型去逼近,這種方法稱為系統辨識。

Ⅲ 什麼是系統的數學模型,試舉例說明線性定常確定性動態系統的數學模型

又稱數學建模。數學模型是近些年發展起來的新學科,是數學理論與實際問題相結合的一門科學。它將現實問題歸結為相應的數學問題,並在此基礎上利用數學的概念、方法和理論進行深入的分析和研究,從而從定性或定量的角度來刻畫實際問題,並為解決現實問題提供精確的數據或可靠的指導。根據研究目的,對所研究的過程和現象(稱為現實原型或原型)的主要特徵、主要關系、採用形式化的數學語言,概括地、近似地表達出來的一種結構,所謂「數學化」,指的就是構造數學模型.通過研究事物的數學模型來認識事物的方法,稱為數學模型方法.簡稱為MM方法。數學模型是數學抽象的概括的產物,其原型可以是具體對象及其性質、關系,也可以是數學對象及其性質、關系。數學模型有廣義和狹義兩種解釋.廣義地說,數學概念、如數、集合、向量、方程都可稱為數學模型,狹義地說,只有反映特定問題和特定的具體事物系統的數學關系結構方數學模型大致可分為二類:(1)描述客體必然現象的確定性模型,其數學工具一般是代效方程、微分方程、積分方程和差分方程等,(2)描述客體或然現象的隨機性模型,其數學模型方法是科學研究相創新的重要方法之一。在體育實踐中常常提到優秀運動員的數學模型。如經調查統計.現代的世界級短跑運動健將模型為身高1.80米左右、體重70公斤左右,100米成績10秒左右或更好等。用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特徵及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。靜態和動態模型靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函數也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。分布參數和集中參數模型分布參數模型是用各類偏微分方程描述系統的動態特性,而集中參數模型是用線性或非線性常微分方程來描述系統的動態特性。在許多情況下,分布參數模型藉助於空間離散化的方法,可簡化為復雜程度較低的集中參數模型。連續時間和離散時間模型模型中的時間變數是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中參數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。隨機性和確定性模型隨機性模型中變數之間關系是以統計值或概率分布的形式給出的,而在確定性模型中變數間的關系是確定的。參數與非參數模型用代數方程、微分方程、微分方程組以及傳遞函數等描述的模型都是參數模型。建立參數模型就在於確定已知模型結構中的各個參數。通過理論分析總是得出參數模型。非參數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈沖響應或階躍響應就是非參數模型。運用各種系統辨識的方法,可由非參數模型得到參數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到參數模型。線性和非線性模型線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。

Ⅳ 什麼是系統的數學模型

什麼是混沌學--1972年12月29日,美國麻省理工學院教授、混沌學開創人之一E.N.洛倫茲在美國科學發展學會第139次會議上發表了題為《蝴蝶效應》的論文,提出一個貌似荒謬的論斷:在巴西一隻蝴蝶翅膀的拍打能在美國得克薩斯州產生一個陸龍卷,並由此提出了天氣的不可准確預報性。時至今日,這一論斷仍為人津津樂道,更重要的是,它激發了人們對混沌學的濃厚興趣。今天,伴隨計算機等技術的飛速進步,混沌學已發展成為一門影響深遠、發展迅速的前沿科學。一般地,如果一個接近實際而沒有內在隨機性的模型仍然具有貌似隨機的行為,就可以稱這個真實物理系統是混沌的。一個隨時間確定性變化或具有微弱隨機性的變化系統,稱為動力系統,它的狀態可由一個或幾個變數數值確定。而一些動力系統中,兩個幾乎完全一致的狀態經過充分長時間後會變得毫無一致,恰如從長序列中隨機選取的兩個狀態那樣,這種系統被稱為敏感地依賴於初始條件。而對初始條件的敏感的依賴性也可作為一個混沌的定義。與我們通常研究的線性科學不同,混沌學研究的是一種非線性科學,而非線性科學研究似乎總是把人們對「正常」事物「正常」現象的認識轉向對「反常」事物「反常」現象的探索。例如,孤波不是周期性振盪的規則傳播;「多媒體」技術對信息貯存、壓縮、傳播、轉換和控制過程中遇到大量的「非常規」現象產生所採用的「非常規」的新方法;混沌打破了確定性方程由初始條件嚴格確定系統未來運動的「常規」,出現所謂各種「奇異吸引子」現象等。混沌來自於非線性動力系統,而動力系統又描述的是任意隨時間發展變化的過程,並且這樣的系統產生於生活的各個方面。舉個例子,生態學家對某物種的長期性態感興趣,給定一些觀察到的或實驗得到的變數(如捕食者個數、氣候的惡劣性、食物的可獲性等等),建立數學模型來描述群體的增減。如果用Pn表示n代後該物種極限數目的百分比,則著名的「羅傑斯蒂映射」:Pn+1=kP(1-Pn(k是依賴於生態條件的常數)可以用於在給定Po,k條件下,預報群體數的長期性態。如果將常數k處理成可變的參數k,則當k值增大到一定值後,「羅傑斯蒂映射」所構成的動力系統就進入混沌狀態。最常見的氣象模型是巨型動力系統的一個例子:溫度、氣壓、風向、速度以及降雨量都是這個系統中隨時間變化的變數。洛倫茲(E.N.Lorenz)教授於1963年《大氣科學》雜志上發表了「決定性的非周期流」一文,闡述了在氣候不能精確重演與長期天氣預報者無能為力之間必然存在著一種聯系,這就是非周期性與不可預見性之間的關系。洛倫茲在計算機上用他所建立的微分方程模擬氣候變化的時候,偶然發現輸入的初始條件的極細微的差別,可以引起模擬結果的巨大變化。洛倫茲打了個比喻,即我們在文首提到的關於在南半球巴西某地一隻蝴蝶的翅膀的偶然扇動所引起的微小氣流,幾星期後可能變成席捲北半球美國得克薩斯州的一場龍卷風,這就是天氣的「蝴蝶效應」。混沌不是偶然的、個別的事件,而是普遍存在於宇宙間各種各樣的宏觀及微觀系統的,萬事萬物,莫不混沌。混沌也不是獨立存在的科學,它與其它各門科學互相促進、互相依靠,由此派生出許多交叉學科,如混沌氣象學、混沌經濟學、混沌數學等。混沌學不僅極具研究價值,而且有現實應用價值,能直接或間接創造財富。混沌學的前途不可限量。

Ⅳ 什麼樣的模型稱為數學模型

數學模型的歷史可以追溯到人類開始使用數字的時代。隨著人類使用數字,就不斷地建立各種數學模型,以解決各種各樣的實際問題。對於廣大的科學技術工作者對大學生的綜合素質測評,對教師的工作業績的評定以及諸如訪友,采購等日常活動,都可以建立一個數學模型,確立一個最佳方案。建立數學模型是溝通擺在面前的實際問題與數學工具之間聯系的一座必不可少的橋梁。

1、真實完整。
1)真實的、系統的、完整的,形象的反映客觀現象;
2)必須具有代表性;
3)具有外推性,即能得到原型客體的信息,在模型的研究實驗時,能得到關於原型客體的原因;
4)必須反映完成基本任務所達到的各種業績,而且要與實際情況相符合。
2、簡明實用。在建模過程中,要把本質的東西及其關系反映進去,把非本質的、對反映客觀真實程度影響不大的東西去掉,使模型在保證一定精確度的條件下,盡可能的簡單和可操作,數據易於採集。
3、適應變化。隨著有關條件的變化和人們認識的發展,通過相關變數及參數的調整,能很好的適應新情況。
根據研究目的,對所研究的過程和現象(稱為現實原型或原型)的主要特徵、主要關系、採用形式化的數學語言,概括地、近似地表達出來的一種結構,所謂「數學化」,指的就是構造數學模型.通過研究事物的數學模型來認識事物的方法,稱為數學模型方法.簡稱為MM方法。
數學模型是數學抽象的概括的產物,其原型可以是具體對象及其性質、關系,也可以是數學對象及其性質、關系。數學模型有廣義和狹義兩種解釋.廣義地說,數學概念、如數、集合、向量、方程都可稱為數學模型,狹義地說,只有反映特定問題和特定的具體事物系統的數學關系結構方數學模型大致可分為二類:(1)描述客體必然現象的確定性模型,其數學工具一般是代數方程、微分方程、積分方程和差分方程等,(2)描述客體或然現象的隨機性模型,其數學模型方法是科學研究相創新的重要方法之一。在體育實踐中常常提到優秀運動員的數學模型。如經調查統計.現代的世界級短跑運動健將模型為身高1.80米左右、體重70公斤左右,100米成績10秒左右或更好等。
用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特徵及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。
靜態和動態模型 靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函數也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。
分布參數和集中參數模型 分布參數模型是用各類偏微分方程描述系統的動態特性,而集中參數模型是用線性或非線性常微分方程來描述系統的動態特性。在許多情況下,分布參數模型藉助於空間離散化的方法,可簡化為復雜程度較低的集中參數模型。
連續時間和離散時間模型 模型中的時間變數是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中參數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。
隨機性和確定性模型 隨機性模型中變數之間關系是以統計值或概率分布的形式給出的,而在確定性模型中變數間的關系是確定的。
參數與非參數模型 用代數方程、微分方程、微分方程組以及傳遞函數等描述的模型都是參數模型。建立參數模型就在於確定已知模型結構中的各個參數。通過理論分析總是得出參數模型。非參數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈沖響應或階躍響應就是非參數模型。運用各種系統辨識的方法,可由非參數模型得到參數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到參數模型。
線性和非線性模型 線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。
編輯本段數學模型的定義現在數學模型還沒有一個統一的准確的定義,因為站在不同的角度可以有不同的定義。不過我們可以給出如下定義。"數學模型是關於部分現實世界和為一種特殊目的而作的一個抽象的、簡化的結構。"具體來說,數學模型就是為了某種目的,用字母、數字及其它數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特徵及其內在聯系的數學結構表達式。

Ⅵ 什麼是數學模型

數學模型是針對參照某種事物系統的特徵或數量依存關系,採用數學語言,概括地或近似地表述出的一種數學結構,這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。

數學模型所表達的內容可以是定量的,也可以是定性的,但必須以定量的方式體現出來。因此,數學模型法的操作方式偏向於定量形式。

建立數學模型的要求:

1、真實完整。

1)真實的、系統的、完整的反映客觀現象;

2)必須具有代表性;

3)具有外推性,即能得到原型客體的信息,在模型的研究實驗時,能得到關於原型客體的原因;

4)必須反映完成基本任務所達到的各種業績,而且要與實際情況相符合。

2、簡明實用。在建模過程中,要把本質的東西及其關系反映進去,把非本質的、對反映客觀真實程度影響不大的東西去掉,使模型在保證一定精確度的條件下,盡可能的簡單和可操作,數據易於採集。

3、適應變化。隨著有關條件的變化和人們認識的發展,通過相關變數及參數的調整,能很好的適應新情況。

數學模型的分類

1、 精確型:內涵和外延非常分明,可以用精確數學表達。

2、 模糊型:內涵和外延不是很清晰,要用模糊數學來描述。

數學模型的基本原則

1、簡化原則

現實世界的原型都是具有多因素、多變數、多層次的比較復雜的系統,對原型進行一定的簡化即抓住主要矛盾,數學模型應比原型簡化,數學模型自身也應是「最簡單」的。

2、可推導原則

由數學模型的研究可以推導出一些確定的結果,如果建立的數學模型在數學上是不可推導的,得不到確定的可以應用於原型的結果,這個數學模型就是無意義的。

3、反映性原則

數學模型實際上是人對現實世界的一種反映形式,因此數學模型和現實世界的原型就應有一定的「相似性」,抓住與原型相似的數學表達式或數學理論就是建立數學模型的關鍵性技巧。

Ⅶ 請問什麼是系統的數學模型建立系統的數學模型有什麼辦法並請分別解釋。(限500字以內)

述內容數據模型包括三個部分:一個數據結構,數據操縱,數據約束。
1)的數據結構:該數據模型的數據結構描述了數據類型,內容,等之間的數據鏈路的性質。數據結構是基於所述數據結構中的數據模型,數據操縱和限制的基礎。具有不同的操作和約束不同的數據結構。
2)操作數據:數據模型描述了數據操縱操作類型和操作方式上的相應的數據結構。
3)數據約束:數據模型約束語法,意思是描述內的數據,對它們之間的約束和依賴關系,以及動態數據的規則的結構之間的主要接觸中的數據,以確保該數據是正確的,有效的和相容性。即,概念數據模型,邏輯數據模型,物理數據模型:根據不同的應用水平分為三種類型
數據模型。
1,概念數據模型(概念數據模型):短期概念模型是一個面向用戶的資料庫模型來實現世界各地,主要用來描述世界的結構,它允許資料庫設計者在初始階段的概念化的設計,擺脫計算機系統和資料庫管理系統的具體技術問題,並著眼於數據分析和之間的其它特定的數據管理系統中的數據鏈路(資料庫管理系統,被稱為DBMS)中是獨立的。概念數據模型必須由一個邏輯數據模型來代替所用的資料庫管理系統來實現。
2,邏輯數據模型(邏輯數據模型):被稱為一個數據模型,這是從該資料庫的用戶模型所示,資料庫管理系統是專門由數據模型的支持,例如網的數據模型(網路數據模型),層次數據模型(層次數據模型)等。這種模式不僅對用戶的需求,同時也為系統,主要用於資料庫管理系統(DBMS)的實現。
3中,物理數據模型(物理數據模型):縮寫物理模型是一個計算機模型的物理表示,描述了存儲介質上的數據結構,它不僅涉及特定的DBMS中,而且還與操作系統和硬體有關。每個邏輯數據模型起到了實現相應的物理數據模型。 DBMS以確保其獨立性和可移植性,大部分的工作,實現了物理數據模型還可以自動完成,設計師只設計指標的特殊結構,聚集。
概念數據模型是最常用的是ER模型,ER模型,面向對象的模型和謂詞模型的擴展。在邏輯數據類型是最常用的分層模型時,網格模型,關系模型。

Ⅷ 一,什麼是數學模型

數學模型是針對參照某種事物系統的特徵或數量依存關系,採用數學語言,概括地或近似地表述出的一種數學結構,這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。
數學模型所表達的內容可以是定量的,也可以是定性的,但必須以定量的方式體現出來。因此,數學模型法的操作方式偏向於定量形式。

Ⅸ 何謂自動控制系統的數學模型建立數學模型的目的何在

自控系統的數學模型主要包括被控對象的數學模型與校正裝置的數學模型。設計自控系統的目的在於令系統在某種控制量輸入時獲得需要的被控量輸出,比如對一個直流電機調速系統而言,輸入的控制量是電樞電壓,而輸出的被控量是電機轉速(或轉矩),我們設計系統的目的就是當輸入特定的電壓時可以得到需要的轉速。那麼到底多高的電壓(輸入量)對應多高的轉速(輸出量)呢?使用如微分方程等數學語言描述輸出對應輸入的關系就叫建立數學模型。而數學模型的作用在於:1.描述被控對象自身特性;2.根據被控對象的特性定量的設計校正環節;3.用於分析整個系統的性能指標,作為系統是否達標的判斷標准。

Ⅹ 習題 2-1 什麼是系統的數學模型常用的數學模型有哪些

—般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義. 模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料. 模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣. 模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞. 模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術. 模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等. 模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意. 模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。 應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式

閱讀全文

與什麼是系統的數學模型相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1421
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1004
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071