㈠ 小學數學教學中如何抓住重點突破難點
數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.
(同學們開講)
學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.
㈡ 怎樣突出數學教學重點突破難點
小學數學教學內容包羅萬象,每堂課都有它自己的教學重點和教學難點.教學難點是學生在課堂上最容易疑惑不解的知識點,是學生認知矛盾的焦點,它猶如學生學習途中的絆腳石,阻礙著學生進一步獲取新知.化解難點、解除疑惑,是教學過程順暢有效的重要保證.因此,在一定意義上來說,教學難點本身也屬於教學重點.教學重點就是指在教學過程中學生必須掌握的基礎知識和基本技能,如概念、性質、法則、計算等等.為了幫助學生解決重點、理解難點,使感性知識理性化,實現知識的長久記憶和靈活運用,教師在突破重難點時要講究教法的直觀、形象和具體,要講究新舊知識之間的前後聯系,要補充相關的感性素材.教師的教學只有結合學生實際,抓住重點,突破難點,教學效果才能得到提高.
下面談談筆者在教學實踐中突破教學重難點的幾點做法:
一、抓住強化感知參與,運用直觀的方法突出重點、突破難點
直觀教學在小學數學教學中具有重要的地位.鑒於小學生的思維一般地還處在具體形象思維階段,而在小學數學教學中,他們要接觸並必須掌握的數學知識卻是抽象的,這就需要在具體與抽象之間架設一座橋梁.直觀正是解決從具體到抽象這個矛盾的有效手段.在教學中,教師應多給學生用學具擺一擺、拼一拼、分一分等動手操作的機會,使學生在動手操作中感知新知、獲得表象,理解和掌握有關概念的本質特徵.如在教學中,可讓學生通過動手畫、量、折疊、剪拼幾何圖形,做一些立方體模型,使學生感知幾何形體的形成過程、特徵和數量關系.如學生在用圓規畫圓時,通過固定一點、確定不變距離、旋轉一周等操作,對圓心、圓的半徑、圓的特徵和怎樣畫圓就會有較深刻的感性認識.
二、抓住數學來源於生活,運用聯系生活的方法突出重點、突破難點
現代教育觀指出:「數學教學,應從學生已有的知識經驗出發,讓學生親身經歷參與特定的教學活動,使學生感受數學與日常生活的密切聯系,從中獲得一些體驗,並且通過自主探索、合作交流,將實際問題抽象成數學模型,並對此進行理解和應用.」所以,我們數學應從小學生已有的生活體驗出發,從生活中「找」數學素材並多讓學生到生活中去「找」數學、「想」數學,使學生真切感受到「生活中處處有數學」.如我們都知道「利息」知識源於生活,在日常生活中應用廣泛.我在教學「利息」時,讓學生通過5000元存入銀行,計算整存整取三年期、整存整取五年期,體會到期後會取得多少利息等.這樣從學生的實際出發,在課堂中充分讓學生「做主」,引導學生從生活實際中理解了有關利息、利率、本金的含義,體會了數學的真實.只有讓數學走進生活,學生才會願學、樂學,從而激發起學生學數學、用數學的熱情.
三、抓住小學生的特點,運用游戲的方法突出重點、突破難點
小學生的特點是好奇好動,對游戲有很大的興趣.一般情況下,他們的注意只能保持15分鍾左右.在教學中,如果組織學生通過靈活多變的游戲活動來學習數學知識,他們就會對數學學習產生濃厚的興趣,把注意力長時間地穩定在學習對象上來,使教學收到很好的效果,而且課堂氣氛妙趣橫生,師生情感融為一體.如:學習「倍」的概念時,和學生一起做拍手游戲.教師首先拍2下,然後拍4個2下,讓學生回答第二次拍的是第一次的幾倍.接著,按要求師生對拍,進而同桌同學互拍.這樣的教學過程,學生始終精神集中、情緒高漲.這種簡單易行的游戲,深受學生喜愛,從而達到了教學的目的.
四、抓住知識間的異同,運用比較的方法突出重點、突破難點
著名教育家烏申斯基認為:「比較是一切理解和思維的基礎,我們正是通過比較來了解世界上的一切的.」小學數學中有許多內容既有聯系又有區別,在教學中充分運用比較的方法,有助於突出教學重點、突破教學難點,使學生容易接受新知識,防止知識的混淆,提高辨別能力,從而扎實地掌握數學知識,發展邏輯思維能力.如:課堂教學中,對學生回答問題或板演,有些教師總是想方設法使之不出一點差錯,即使是一些容易產生典型錯誤的稍難問題,教者也有「高招」使學生按教師設計的正確方法去解決,造成上課一聽就懂、課後一做就錯的不良後果.這樣其實是教師對教學難點沒吃透、教學中教學難點沒突破的反映.教師在教學中,可通過一兩個典型的例題,讓學生暴露錯解,師生共同分析出錯誤的原因,比較正、誤兩種解法,從正反兩個方面吸取經驗教訓,使學生真正理解重難點,靈活運用新知.
五、抓住知識間的聯系,採用轉化的策略突破重點和難點
轉化的方法就是利用已有的知識和經驗,將復雜的轉化為簡單的,將未知的轉化為已知的,將看來不能解答的轉化成能解答的,簡單地說就是化未知為已知、化繁為簡、化曲為直等.在教學中,教師如能做到「化新為舊」,抓住知識間的「縱橫聯系」,幫助學生形成知識網路,逐步教給學生一些轉化的思考方法,讓學生掌握多種轉化途徑,就能掌握解題策略,提高解題能力.以六年級上冊「解決問題的策略――替換」為例,「替換」是一種應用於特定問題情境下的解題策略,從學生的認知結構上看,掌握這一解題策略的過程是順應的過程.因此,這節課的教學重點就是教學難點,即會用「替換」的策略理解題意、分析數量關系.除此以外,這節課的另一個教學難點是,在用「替換」的策略解決相差關系的問題時,要找准總數與份數的對應數量,理解總數的變化,從而達到突出重點、突破難點的目的.
「教學有法,但無定法.教無定法,貴在得法.」總之,在數學教學中如何突出重點、突破難點,並沒有固定不變的模式.教師的教服務於學生的學,只要我們每一位數學教師在備課上多動腦筋,多花心血,認真研究大綱,努力鑽研教材,結合學生實際,弄清重點、難點,合理安排教學環節,精心設計課堂提問,全身心投入到教學工作中去,就能找到關於突出重點、突破難點的「錦囊妙計」,從而實現教學效果的最優化.
㈢ 如何在小學數學教學中突破重難點
一堂課上的好不好,關鍵看教師是否正確地講解了教材的基本內容,是否突破了教材的重點及解決了教材的難點,使學生真正地理解和掌握了教材的基本知識。教師在教學中能否抓住重點、突破難點,是做好教學工作的基本條件,也是教師能力的表現。
一、什麼是教學重點和教學難點
所謂教學重點,「在教材內容的邏輯結構的特定層次中占相對重要的前提判斷」,也就是「在整個知識體系或課題體系中處於重要地位和突出作用的內容」。如果某知識點是某單元內容的核心、是後繼學習的基礎或有廣泛應用等,即可確定它是教學重點。也就是學生必須掌握的基本知識和基本技能,如意義、法則、性質、計算方法還包括數量關系、解決問題的策略等。例如,一年級100以內數的大小比較這節課的教學重點是比較兩個數大小的方法;二年級平移和旋轉的教學重點是初步感知平移和旋轉現象;三年級中的平均數教學重點是理解平均數的含義;24時計時法的教學重點是知道24時計時法的含義,會用24時計時法表示時刻;四年級連減的簡便計算教學重點是掌握連減的簡便演算法;五年級長方體的體積教學重點是運用長方體的體積公式解決實際問題;六年級用比例知識解決問題教學重點是會用比例知識解決問題。
教學難點,一般指對於大多數學生來說是理解和掌握起來感覺比較困難的關鍵性的知識點或容易出現混淆、錯誤的問題。例如,一年級實踐活動的擺一擺,想一想的難點是通過觀察找出用圓片擺出不同數的規律;二年級平移和旋轉的教學難點是會在方格紙上畫一個簡單圖形沿水平和豎直方向平移後的圖形;三年級中的年月日的教學難點是記住每個月及平年閏年的天數,初步學會判斷某一年是平年還是閏年。四年級李志蘭和 劉永霞老師講的兩節課的難點是靈活選擇計算方法解決實際問題;五年級長方體的體積教學難點是理解長方體的體積公式推導過程;六年級圖形的放大與縮小教學難點是按一定的比例將圖形放大和縮小。難點有時和重點是一致的。六年級上冊的一個數乘以分數的意義的理解,既是教學中的一個難點,同時也是教學中的一個重點。
教學重點和教學難點也具有各自的特點。
教學重點來自於知識本身,是由於數學知識內在的邏輯結構而客觀存在的,因而對每一個學生均是一致的。而教學難點卻不同,它依賴於學生自身的理解和接受能力。實踐證明不同層次的學生對於同一知識點的難點突破速度與水平是參差不齊的。
由於教學重點與難點二者形成的依據不同,所以有的教學內容既是教學重點又是教學難點,有的內容是教學重點但不一定是教學難點,有的內容是教學難點但不一定是教學重點。但是教學重點和難點都是由同一教學內容的教學目標所決定的。
二、研究教學重難點的意義何在
可以用這樣一句話概括——落實教學重點是使學生掌握知識的前提,突破難點是教學成功的關鍵。而教師在教學過程中突破重難點的方法往往是使學生活躍思維、激發興趣的催化劑。
三、如何在數學教學中突破重點和難點
這需要每一位數學教師在教學實踐中不斷地學習、總結、摸索。下面我就談一談對此問題的點滴體會和做法。
1.抓住知識間的銜接,運用遷移的方法突破重點和難點
我們先來關注數學的學科特點。小學數學學科的特點之一就是系統性很強,每項新知識往往和舊知識緊密相連,新知識就是舊知識的延伸和發展,舊知識就是新知識的基礎和生長點。有時新知識可以由舊知識遷移而來,可同時它又成為後續知識的基礎。因此,數學知識點就像一根根鏈條節節相連、環環相扣。
由此可見,如果老師能夠善於捕捉數學知識之間的銜接點,自覺地以「遷移」作為一種幫助學生學習的方法,以舊引新、舊中蘊新,組織積極的遷移,就不難實現教學重、難點的突破了。
案例一:分數的基本性質
分數的基本性質是這樣敘述的:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
教學時,如果把它作為一個孤立知識點來教學,通過觀察1/2=2/4=6/12從左到右、從右到左的逐一變化,一遍又一遍的敘述由誰到誰的變化過程,老師的目的就是想讓學生在不斷的重復中體會這一規律的存在,學會用同一語式去表達,但是到最後學生也未必能夠結合自己的理解,用一句比較簡練、准確地數學語言來描述出分數的基本性質。
如果,我們在教學前先來分析一下分數的基本性質的知識基礎,就會找到與它的敘述非常相似的「商不變的性質」和溝通兩者聯系的「分數與除法的關系」;此時我們為了突破「引導學生歸納概括出分數的基本性質」 教學難點,就可以在課前的復習環節安排對於「商不變的性質」的敘述和 「分數與除法的關系」的練習。
可以運用遷移方法教學的知識點還很多,如除數是兩位數的除法,它在學習了除數是一位數的除法筆算的基礎上遷移學習,只是增加試商和調商且難度增大、方法更加靈活。再如,乘數是多位數的乘法是在學習一位數乘法的基礎上遷移,運算方法相同。
由此可以看出,在數學教學過程中,要重視揭示和建立新舊知識的內在聯系,從已有的知識和經驗出發,運用遷移的方法來突破重難點。這種方法得以實施的關鍵在於學生對舊知識的掌握應該是熟練的,他所掌握的前期知識是牢固的。因此,強調我們每一年段的老師都要把自己視為「把關教師」,讓學生「走穩每一步」。
2.抓住知識間的聯系,採用轉化的策略突破重點和難點
轉化——是指解決數學問題時,常遇到一些問題直接求解較為困難,通過觀察、分析、類比、聯想等思維過程,選擇運用恰當的數學方法進行變換,將原問題轉化為一個新問題(相對來說,對自己較熟悉的問題),通過新問題的求解,達到解決原問題的目的,這一思想方法我們稱之為「化歸與轉化的思想方法」一個新知識往往是舊知識的發展和結果,也就可以轉化為舊知識來認識和理解。在教學中,教師如能做到「化新為舊」,抓住知識間的「縱橫聯系」,幫助學生形成知識網路,逐步教給學生一些轉化的思考方法,使他們能用轉化的觀點去學習新知識、分析新問題才能使他們對知識的理解不斷深刻,最終達到融匯貫通。
例如:三角形面積、梯形面積、圓面積公式的推倒。
3.強化感知參與,運用直觀的方法突破教學重難點
直觀——是指在教學過程中充分運用實物、模型、多媒體計算機等教學用具,通過實際操作、觀察、思考的活動,幫助學生理解和掌握數學知識,促進學生的思維發展。直觀教學是小學數學教學活動中的一種最常用的也是最為有獨立自主的教學方法。
(1)動手操作,解決重點難點問題
如:圓的面積的推導
(2)通過畫圖,解決重點難點問題
可以用圖幫助解決問題,如(
(3)直觀演示,解決重點難點問題
比如:用課件演示物體的平移和旋轉、用課件演示鍾表一天的轉動,學生理解了教學重點24時計時法的含義、在學習長正方體的體積計算時,如果利用課件演示來幫助學生體會體積實際上就是一個形體中含有體積單位的個數,那就在交流匯報這個環節不至於浪費時間了。
(4)編制歌訣,幫助學生直觀的記憶
如教學的年月日進行歌訣記憶。還有教學五年級因數和倍數單元,概念又多又易混淆。教師可以引導學生自編歌謠來幫助記憶。如讓學生背100以內質數表,單去死記硬背一個一個的數相當困難,就可以引導學生把這些數分組變成歌謠來記:二、三、五、七和十一,十三後面是十七,十九、二三、二十九,三一、三七、四十一,四三、四七、五十三,五九、六十一、六十七,七一、七三、七十九,八三、八九、九十七。
再如求最大公因數和最小公倍數也可以用下面歌謠來記:
兩數互質要記牢最大公因就是1,最小公倍是乘積;
兩數倍數關系時,最大公因取較小,最小公倍取較大;
兩數關系不明顯,就用短除來試商,最大公因乘半邊,最小公倍乘一圈。
運用好直觀方法的關鍵是化抽象為具體,激發學生的學習興趣,促進學生對知識的理解,發展思維能力。
教學中突破教學重難點的方法還有很多,以上介紹的方法是針對一些知識點的教學單獨使用的情況,這些方法當然也可以聯合使用。總之,我們要做到在教學中切實提高課堂效率,就要深入研究教材和學生,努力實現「教無定法,貴在得法」。
㈣ 如何突破小學數學重難點
數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.
(同學們開講)
學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.
㈤ 怎樣把握數學教學重難點
小學數學這門學科有著極強的抽象性與系統性,各類知識有機構成完善的知識體系,如果其中一個重點或者難點知識,學生沒有把握,就會影響其整體知識的構建,因此,在小學數學中,不僅要重視基礎知識的傳授,還要把握好重點與難點。
一、從全局角度把控重點與難點
要把握重點、突破難點,必須要搞清楚什麼是重點、什麼是難點,只有掌握這一問題,教學活動才能夠具備針對性。教學重點,就是教學內容中具有突出地位的教學內容,在後續的知識點中,應用十分廣泛,如各種法則、概念、策略、性質等;難點就是根據學生的認知水平與知識知識來看,多數學生理解起來都存在困難的知識。
重點是客觀存在的,而教學重點則根據學生的實際情況,主觀存在,作為教師,必須要明確具體的難點和重點知識。
首先,把握教材,處理好各類知識點的聯系。教材是重點和難點的起源,也是學生學習和教師教學的重點依據,作為教師,要深入研讀教材,挖掘出教材中的核心知識點,從全局上把握重點,做到胸有成竹,這樣才能夠提高小學數學的教學有效性。
其次,根據學生具體情況來確定重點。
每一個學生都是獨立存在的個體,他們的生活背景不同,學習能力、認知能力都有所差異,因此,我們必須要了解每個班級學生的基礎知識水平,嚴格按照因材施教的原則開展教學。在具體的教學活動中,要注意觀察學生的表現,建立成長備案,查看學生的知識接收能力與學習變化,滿足每一個層次學生的學習需求,及時根據學生的學習狀態調整重點和難點。
二、注重數學知識之間的遷移
每一個數學知識點之間,都不是獨立存在的,而是具有客觀的聯系,如果將其割裂開來,數學課堂無疑是低效的,也會影響學生的知識掌握情況。
小學階段的認知活動是一個從簡到繁的過程,需要基於特定的知識基礎上,要幫助學生突破重點和難點知識,必須要注重數學知識的遷移。
新知識的教學要以舊知識作為基礎,找到兩者的銜接之處,促進知識之間的遷移,有了以往學習過的知識作為鋪墊,學生學習起來就容易得多。
如,在關於《平行四邊形面積》的教學中,其中的重點和難點就是面積的推導,在學習時,可以先復習長方形、三角形面積求解方式,引導學生思考,看平行四邊形與自己以前學習過的哪個圖形相似,將其轉化為自己學習過的一個圖形。經過對比與分析後,學生就可以知道,平行四邊形與自己以前學習過的長方形有著很多相似之處,這樣推導起來就變得更加容易了,教學難點與重點也得到了很好的突破。
三、藉助多媒體突破難點與重點知識
多媒體技術的應用為小學數學教學帶來了全新的生機,合理應用多媒體教學,
可以改變傳統課堂中粉筆+教材+黑板的教學模式,將知識點用形象趣味的視頻、圖片、聲音、文字來展示出來,讓學生的各類感官都可以參與進來,將抽象的數學知識形象化,將靜止的圖象生動形象的為學生展示出來。如,在關於《長方體旋轉》這一課的教學中,可以利用多媒體播放關於長方體展開的樣子,讓學生認識到,一個長方體是由六個面組成的,且這六個面之間是兩兩相對的,這樣,學生就會對這一圖形形成全面的認識,更好的解決了難點和重點知識,鍛煉了學生的空間思維能力,讓他們不再懼怕幾何知識。
四、利用生長點來解決重點與難點
實施證明,任何一個新知識的產生,都有著一定的知識生長點,新知識和就知識之間,有著一些相似之處,在教學時,要突出兩者之間的「共同點」與「連接點」,在講解時,注意與學生已有的生活相聯系,讓學生調動起自己頭腦中的認知概念,
以此來更好的理解數學難點和重點。
例如,在《平均分》的教學中,可以提前准備一些物品,將其平均分為數份,讓學生參與到「平均分」的具體實踐中,最後,讓學生採用不同的練習方法,強化對相關知識點的理解。
此外,在日常教學中,要重視對比,利用類比和分析來辨析容易混淆的知識點,避免新知識的學習對原有知識產生干擾。
例如,在《化簡分》的教學中,可以與《求比值》進行對比,前者是為了得到整數比,而後者可以寫成小數和分數,這樣對比下來,學生就很容易理解了。作為教師,要發揮主導作用,處理好講授與自主學習的關系。
通過有效的措施,引導學生獨立思考、主動探索、合作交流,使學生理解和掌握基本的數學知識與技能、數學思想和方法,得到必要的數學思維訓練,獲得基本的數學活動經驗。
在小學數學學科中,有大量的重點和難點知識,關於重點與難點知識的教學,並非是一成不變的,在日常教學中,我們要留心觀察,在備課方面多動腦筋,鑽研教材,結合學生的具體情況把握重點、突破難點,科學安排教學活動,精心設計提問,找到解決重點和難點知識的關鍵點。
㈥ 數學課堂教學中怎樣突破重難點
小學數學教學內容包羅萬象,每堂課都有它自己的教學重點和教學難點.教學難點是學生在課堂上最容易疑惑不解的知識點,是學生認知矛盾的焦點,它猶如學生學習途中的絆腳石,阻礙著學生進一步獲取新知.化解難點、解除疑惑,是教學過程順暢有效的重要保證.因此,在一定意義上來說,教學難點本身也屬於教學重點.教學重點就是指在教學過程中學生必須掌握的基礎知識和基本技能,如概念、性質、法則、計算等等.為了幫助學生解決重點、理解難點,使感性知識理性化,實現知識的長久記憶和靈活運用,教師在突破重難點時要講究教法的直觀、形象和具體,要講究新舊知識之間的前後聯系,要補充相關的感性素材.教師的教學只有結合學生實際,抓住重點,突破難點,教學效果才能得到提高.
下面談談筆者在教學實踐中突破教學重難點的幾點做法:
一、抓住強化感知參與,運用直觀的方法突出重點、突破難點
直觀教學在小學數學教學中具有重要的地位.鑒於小學生的思維一般地還處在具體形象思維階段,而在小學數學教學中,他們要接觸並必須掌握的數學知識卻是抽象的,這就需要在具體與抽象之間架設一座橋梁.直觀正是解決從具體到抽象這個矛盾的有效手段.在教學中,教師應多給學生用學具擺一擺、拼一拼、分一分等動手操作的機會,使學生在動手操作中感知新知、獲得表象,理解和掌握有關概念的本質特徵.如在教學中,可讓學生通過動手畫、量、折疊、剪拼幾何圖形,做一些立方體模型,使學生感知幾何形體的形成過程、特徵和數量關系.如學生在用圓規畫圓時,通過固定一點、確定不變距離、旋轉一周等操作,對圓心、圓的半徑、圓的特徵和怎樣畫圓就會有較深刻的感性認識.
二、抓住數學來源於生活,運用聯系生活的方法突出重點、突破難點
現代教育觀指出:「數學教學,應從學生已有的知識經驗出發,讓學生親身經歷參與特定的教學活動,使學生感受數學與日常生活的密切聯系,從中獲得一些體驗,並且通過自主探索、合作交流,將實際問題抽象成數學模型,並對此進行理解和應用.」所以,我們數學應從小學生已有的生活體驗出發,從生活中「找」數學素材並多讓學生到生活中去「找」數學、「想」數學,使學生真切感受到「生活中處處有數學」.如我們都知道「利息」知識源於生活,在日常生活中應用廣泛.我在教學「利息」時,讓學生通過5000元存入銀行,計算整存整取三年期、整存整取五年期,體會到期後會取得多少利息等.這樣從學生的實際出發,在課堂中充分讓學生「做主」,引導學生從生活實際中理解了有關利息、利率、本金的含義,體會了數學的真實.只有讓數學走進生活,學生才會願學、樂學,從而激發起學生學數學、用數學的熱情.
三、抓住小學生的特點,運用游戲的方法突出重點、突破難點
小學生的特點是好奇好動,對游戲有很大的興趣.一般情況下,他們的注意只能保持15分鍾左右.在教學中,如果組織學生通過靈活多變的游戲活動來學習數學知識,他們就會對數學學習產生濃厚的興趣,把注意力長時間地穩定在學習對象上來,使教學收到很好的效果,而且課堂氣氛妙趣橫生,師生情感融為一體.如:學習「倍」的概念時,和學生一起做拍手游戲.教師首先拍2下,然後拍4個2下,讓學生回答第二次拍的是第一次的幾倍.接著,按要求師生對拍,進而同桌同學互拍.這樣的教學過程,學生始終精神集中、情緒高漲.這種簡單易行的游戲,深受學生喜愛,從而達到了教學的目的.
四、抓住知識間的異同,運用比較的方法突出重點、突破難點
著名教育家烏申斯基認為:「比較是一切理解和思維的基礎,我們正是通過比較來了解世界上的一切的.」小學數學中有許多內容既有聯系又有區別,在教學中充分運用比較的方法,有助於突出教學重點、突破教學難點,使學生容易接受新知識,防止知識的混淆,提高辨別能力,從而扎實地掌握數學知識,發展邏輯思維能力.如:課堂教學中,對學生回答問題或板演,有些教師總是想方設法使之不出一點差錯,即使是一些容易產生典型錯誤的稍難問題,教者也有「高招」使學生按教師設計的正確方法去解決,造成上課一聽就懂、課後一做就錯的不良後果.這樣其實是教師對教學難點沒吃透、教學中教學難點沒突破的反映.教師在教學中,可通過一兩個典型的例題,讓學生暴露錯解,師生共同分析出錯誤的原因,比較正、誤兩種解法,從正反兩個方面吸取經驗教訓,使學生真正理解重難點,靈活運用新知.
五、抓住知識間的聯系,採用轉化的策略突破重點和難點
轉化的方法就是利用已有的知識和經驗,將復雜的轉化為簡單的,將未知的轉化為已知的,將看來不能解答的轉化成能解答的,簡單地說就是化未知為已知、化繁為簡、化曲為直等.在教學中,教師如能做到「化新為舊」,抓住知識間的「縱橫聯系」,幫助學生形成知識網路,逐步教給學生一些轉化的思考方法,讓學生掌握多種轉化途徑,就能掌握解題策略,提高解題能力.以六
㈦ 數學教學如何突破重點突出難點
在教學過程中,教師應不斷地尋找教學范圍,尋找切實可行的教學模式進行有效實行教學。以下是我的點滴建議:一、熟悉教材,優化課堂,突破重難點教學大綱和教材內容是教師教學的重要根據,熟悉教材、優化課堂。熟悉教材是教師教學的根本,需要教師對教材本身的理解,可說熟悉教材是教學的重要環節。如語文課文的文學理解、數學例題的知識理解,又如對於一篇課文,需要挖掘其語言訓練的因素;對於一道例題,可能還蘊含著規律發現的思維訓練要素等。根據學科教學的性質與特色,並結合本班學生的情況,挖掘其教學價值。認真備課是上好每一節課的先決條件,備課的質量關系著課的成敗。在備課的過程中做到有打算、有目的、有中心,有教材,也要有學生。在備課的過程中應注意靈活多樣的情勢,把握好課內容,親密接洽生活實際豐盛教學內容,增強課堂教學和生活的溝通,讓學生更好地理解所教的內容,懂得教學內容潛在的意義,從而突出重難點,讓課堂教學精力紛呈。二、課堂中教師的講解課堂中教師的講解非常必要的,教學離不開講解,講解法是最根本的教學方法。在新課程實行過程中有些老師總以為講解就是「舊觀念」, 甚至懼怕「講解」,其實這是一種過錯的觀點和做法。「講亦有道」, 在教學中,「當講則講」, 新課程改革實行中進一步強調教學的實踐性,提出了「精講教學內容的基礎知識,著重培育學生自主能力,體現學生的主體地位」,不當講時不必講,講解必需是適時,講解時語言必需清晰,緊扣主題,圍繞中心,講求藝術性,有效地突出重難點。三、創設問題及解決問題教學的對象指向學生,最終目的是體現在學生身上,假如學生沒有獲得發展,那麼即使教師工作得再累、再多的付出、論文寫得再好也是勞而無功,失去意義。所以教師應在課堂中精心創設問題,誘發學生思維的積極性,增進學生思維的持續發展。有效的問題會激起學生的學習興趣和求知慾,如提出一個問題設置疑問,引起學生的關注,給學生提供一些學習材料和一些解決問題的方法,使學生通過察看、思考,發現問題,從而激起學生發生積極探究的慾望,集中注意力,積極思考 ,讓學生在不知不覺中自主的去追求摸索問題,把學生領進精彩的問題的空間和解決問題的創新思維,從而突破重難點。
㈧ 如何在數學教學中突破重點和難點
一堂課上的好不好,關鍵看教師是否正確地講解了教材的基本內容,是否突破了教材的重點及解決了教材的難點,使學生真正地理解和掌握了教材的基本知識。教師在教學中能否抓住重點、突破難點,是做好教學工作的基本條件,也是教師能力的表現。 一、什麼是教學重點和教學難點 所謂教學重點,「在教材內容的邏輯結構的特定層次中占相對重要的前提判斷」,也就是「在整個知識體系或課題體系中處於重要地位和突出作用的內容」。如果某知識點是某單元內容的核心、是後繼學習的基礎或有廣泛應用等,即可確定它是教學重點。也就是學生必須掌握的基本知識和基本技能,如意義、法則、性質、計算方法還包括數量關系、解決問題的策略等。例如,一年級100以內數的大小比較這節課的教學重點是比較兩個數大小的方法;二年級平移和旋轉的教學重點是初步感知平移和旋轉現象;三年級中的平均數教學重點是理解平均數的含義;24時計時法的教學重點是知道24時計時法的含義,會用24時計時法表示時刻;四年級連減的簡便計算教學重點是掌握連減的簡便演算法;五年級長方體的體積教學重點是運用長方體的體積公式解決實際問題;六年級用比例知識解決問題教學重點是會用比例知識解決問題。 教學難點,一般指對於大多數學生來說是理解和掌握起來感覺比較困難的關鍵性的知識點或容易出現混淆、錯誤的問題。例如,一年級實踐活動的擺一擺,想一想的難點是通過觀察找出用圓片擺出不同數的規律;二年級平移和旋轉的教學難點是會在方格紙上畫一個簡單圖形沿水平和豎直方向平移後的圖形;三年級中的年月日的教學難點是記住每個月及平年閏年的天數,初步學會判斷某一年是平年還是閏年。四年級李志蘭和劉永霞老師講的兩節課的難點是靈活選擇計算方法解決實際問題;五年級長方體的體積教學難點是理解長方體的體積公式推導過程;六年級圖形的放大與縮小教學難點是按一定的比例將圖形放大和縮小。難點有時和重點是一致的。六年級上冊的一個數乘以分數的意義的理解,既是教學中的一個難點,同時也是教學中的一個重點。 教學重點和教學難點也具有各自的特點。 教學重點來自於知識本身,是由於數學知識內在的邏輯結構而客觀存在的,因而對每一個學生均是一致的。而教學難點卻不同,它依賴於學生自身的理解和接受能力。實踐證明不同層次的學生對於同一知識點的難點突破速度與水平是參差不齊的。 由於教學重點與難點二者形成的依據不同,所以有的教學內容既是教學重點又是教學難點,有的內容是教學重點但不一定是教學難點,有的內容是教學難點但不一定是教學重點。但是教學重點和難點都是由同一教學內容的教學目標所決定的。 二、研究教學重難點的意義何在 可以用這樣一句話概括——落實教學重點是使學生掌握知識的前提,突破難點是教學成功的關鍵。而教師在教學過程中突破重難點的方法往往是使學生活躍思維、激發興趣的催化劑。 三、如何在數學教學中突破重點和難點 這需要每一位數學教師在教學實踐中不斷地學習、總結、摸索。下面我就談一談對此問題的點滴體會和做法。1.抓住知識間的銜接,運用遷移的方法突破重點和難點 我們先來關注數學的學科特點。小學數學學科的特點之一就是系統性很強,每項新知識往往和舊知識緊密相連,新知識就是舊知識的延伸和發展,舊知識就是新知識的基礎和生長點。有時新知識可以由舊知識遷移而來,可同時它又成為後續知識的基礎。因此,數學知識點就像一根根鏈條節節相連、環環相扣。 由此可見,如果老師能夠善於捕捉數學知識之間的銜接點,自覺地以「遷移」作為一種幫助學生學習的方法,以舊引新、舊中蘊新,組織積極的遷移,就不難實現教學重、難點的突破了。 案例一:分數的基本性質 分數的基本性質是這樣敘述的:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。 教學時,如果把它作為一個孤立知識點來教學,通過觀察1/2=2/4=6/12從左到右、從右到左的逐一變化,一遍又一遍的敘述由誰到誰的變化過程,老師的目的就是想讓學生在不斷的重復中體會這一規律的存在,學會用同一語式去表達,但是到最後學生也未必能夠結合自己的理解,用一句比較簡練、准確地數學語言來描述出分數的基本性質。 如果,我們在教學前先來分析一下分數的基本性質的知識基礎,就會找到與它的敘述非常相似的「商不變的性質」和溝通兩者聯系的「分數與除法的關系」;此時我們為了突破「引導學生歸納概括出分數的基本性質」 教學難點,就可以在課前的復習環節安排對於「商不變的性質」的敘述和 「分數與除法的關系」的練習。 可以運用遷移方法教學的知識點還很多,如除數是兩位數的除法,它在學習了除數是一位數的除法筆算的基礎上遷移學習,只是增加試商和調商且難度增大、方法更加靈活。再如,乘數是多位數的乘法是在學習一位數乘法的基礎上遷移,運算方法相同。 由此可以看出,在數學教學過程中,要重視揭示和建立新舊知識的內在聯系,從已有的知識和經驗出發,運用遷移的方法來突破重難點。這種方法得以實施的關鍵在於學生對舊知識的掌握應該是熟練的,他所掌握的前期知識是牢固的。因此,強調我們每一年段的老師都要把自己視為「把關教師」,讓學生「走穩每一步」。2.抓住知識間的聯系,採用轉化的策略突破重點和難點 轉化——是指解決數學問題時,常遇到一些問題直接求解較為困難,通過觀察、分析、類比、聯想等思維過程,選擇運用恰當的數學方法進行變換,將原問題轉化為一個新問題(相對來說,對自己較熟悉的問題),通過新問題的求解,達到解決原問題的目的,這一思想方法我們稱之為「化歸與轉化的思想方法」一個新知識往往是舊知識的發展和結果,也就可以轉化為舊知識來認識和理解。在教學中,教師如能做到「化新為舊」,抓住知識間的「縱橫聯系」,幫助學生形成知識網路,逐步教給學生一些轉化的思考方法,使他們能用轉化的觀點去學習新知識、分析新問題才能使他們對知識的理解不斷深刻,最終達到融匯貫通。 例如:三角形面積、梯形面積、圓面積公式的推倒。3.強化感知參與,運用直觀的方法突破教學重難點 直觀——是指在教學過程中充分運用實物、模型、多媒體計算機等教學用具,通過實際操作、觀察、思考的活動,幫助學生理解和掌握數學知識,促進學生的思維發展。直觀教學是小學數學教學活動中的一種最常用的也是最為有獨立自主的教學方法。(1)動手操作,解決重點難點問題 如:圓的面積的推導(2)通過畫圖,解決重點難點問題 可以用圖幫助解決問題,如( (3)直觀演示,解決重點難點問題 比如:用課件演示物體的平移和旋轉、用課件演示鍾表一天的轉動,學生理解了教學重點24時計時法的含義、在學習長正方體的體積計算時,如果利用課件演示來幫助學生體會體積實際上就是一個形體中含有體積單位的個數,那就在交流匯報這個環節不至於浪費時間了。(4)編制歌訣,幫助學生直觀的記憶 如教學的年月日進行歌訣記憶。還有教學五年級因數和倍數單元,概念又多又易混淆。教師可以引導學生自編歌謠來幫助記憶。如讓學生背100以內質數表,單去死記硬背一個一個的數相當困難,就可以引導學生把這些數分組變成歌謠來記:二、三、五、七和十一,十三後面是十七,十九、二三、二十九,三一、三七、四十一,四三、四七、五十三,五九、六十一、六十七,七一、七三、七十九,八三、八九、九十七。 再如求最大公因數和最小公倍數也可以用下面歌謠來記: 兩數互質要記牢最大公因就是1,最小公倍是乘積; 兩數倍數關系時,最大公因取較小,最小公倍取較大; 兩數關系不明顯,就用短除來試商,最大公因乘半邊,最小公倍乘一圈。 運用好直觀方法的關鍵是化抽象為具體,激發學生的學習興趣,促進學生對知識的理解,發展思維能力。 教學中突破教學重難點的方法還有很多,以上介紹的方法是針對一些知識點的教學單獨使用的情況,這些方法當然也可以聯合使用。總之,我們要做到在教學中切實提高課堂效率,就要深入研究教材和學生,努力實現「教無定法,貴在得法」。
㈨ 如何在數學教學中突破重難點
一、所謂教學重點,就是「在整個知識體系中處於重要地位和有突出作用的內容」.也就是學生必須掌握的基本知識和技能,如意義、法則、性質、計算方法還包括數量關系、解決問題的策略等.
教學難點,一般指對於大多數學生來說是理解和掌握起來感覺比較困難的關鍵性的知識點或容易出現混淆、錯誤的問題.\x0d教學重點來自於知識本身,是由於數學知識內在的邏輯結構而客觀存在的;教學難點依賴於學生自身的理解和接受能力,二者都是由同一教學內容的教學目標所決定的.
二、研究教學重難點的意義何在\x0d可以用這樣一句話概括:落實教學重點是學生掌握知識的前提,突破難點是教學成功的關鍵.而教師在教學過程中突破重難點的方法,往往是學生思維活躍、激發興趣的催化劑.
三、突破重點、難點的幾條主要策略
1.把握好教材是前提\x0d引導學生學會走路,首先自己要識途.要想在教學中做到突出重點、突破難點,第一是深鑽教材,從知識結構上,抓住每節課的重點和難點.第二是備足學生,根據學生實際的認知水平,並考慮到不同學生認知結構的差異,把握好教學重點和難點.課前的精心准備、准確定位,就為教學時突出重點和突破難點提供了有利條件.
重點內容抓住主要特徵一是應用廣泛,二是與以後學習的關系最直接、最密切.這就是通常所說的新知識的生長點或新舊知識的連接點.
確定難點時,應注意兩點:首先要設身處地地為學生著想,認真分析學生理解、掌握知識過程中的難處;其次要充分考慮學生認識和心理過程中可能出現的種種障礙.因此,我確定本節課的教學重點是認識銳角三角形、直角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點;教學難點是理解並掌握各種三角形的特徵.
找准知識的生長點是條件
小學數學是系統性很強的學科.數學教學就是要藉助於數學的邏輯結構,引導學生由舊入新,組織積極的遷移,促成由已知到未知的推理,認識簡單與復雜問題的聯系,不斷完善認知結構.因此,新知識的形成都有其固定的知識生長點,找准知識的生長點,才能突出重點、突破難點.
我們可以依據以下3點找准知識生長點:(1)有的新知識與某些舊知識屬同類或相似,要突出「共同點」,如除數是兩、三位數的除法,是以除數是一位數的除法為基礎的,後者是除數由一位變為兩位、三位,出現了從被除數的哪一位除起,先看被除數的前幾位的問題.但無論除數是幾位數,試商方法都是一致的,即有共同點,就是教學中應抓住的;(2)有的新知識由兩個或兩個以上舊知識組合而成,要突出「連接點」,如「異分母分數加減法」是由同分母加減法的計算方法和通分兩個舊知識組成的,它的關鍵問題是因為分數單位不同不能直接相加減,通分則成為兩個舊知識的連接點;(3)有的新知識由某舊知識發展而來的,要突破「演變點」,如「有餘數除法的驗算」這部分知識,要以前面能整除的除法驗算為基礎,兩類驗算都要用「商和除數相乘」,後者演變的是「還要加上余數」.
本節課是在學生初步認識了三角形的基礎上的進一步學習,所以教師始終抓住角和邊的特徵深入認識各種三角形這一「演變點」,開展教學活動,進而不斷突破.\x0d3、採用合適的教學方法是關鍵\x0d《課程標准》指出:教師的教學應該以學生的認知發展水平和已有的經驗為基礎,面向全體學生,注重啟發式和因材施教.教師要發揮主導作用,處理好講授與自主學習的關系,通過有效的措施,引導學生獨立思考、主動探索、合作交流,使學生理解和掌握基本的數學知識與技能、數學思想和方法,得到必要的數學思維訓練,獲得基本的數學活動經驗.\x0d因此根據學生實際,採用合適的教學方法是突出重點、突破難點的關鍵.常用的教學方法有:溫故知新法(遷移法)、動手實踐法、直觀演示法、啟發引導法、聯系生活法、嘗試法、比較法、發現法、轉化法、求證法、游戲法等.
本課主要採用的是動手實踐法、直觀演示法、啟發引導法、比較法、發現法、求證法、游戲法.如在找分類標准上,「剛才我們將屋子裡的這些人按照不同的標准進行了分類,你打算按什麼標准給這些三角形分類呢?」採用的是啟發引導法;在自主探索、小組合作進行三角形分類活動時,採用的是動手實踐法、比較法、發現法;認識各類三角形時,採用的是直觀演示法、發現法、比較法、求證法和游戲法,特別是在突破「理解並掌握各種三角型特徵」這一難點時,重點採用的是比較法、求證法和游戲法.在學生直觀演示匯報中,老師發現學生在預習的基礎上,雖已知道各種三角形名稱及概念,但分類卻不準確,說明學生根本沒有理解其特徵.於是老師以學定教,改變了預先的設計思路,順應學生的思維,先讓學生說出各種三角形的概念,再引導學生運用多種方法如比較法、求證法等進行驗證,最後歸納、記憶.在這一過程中,學生通過看一看、找一找、分一分、議一議、比一比、量一量、說一說等,多種感官積極主動參與活動.由於經歷體驗的比較充分,因而從課堂學習效果來看,教師已經突破了教學重點和難點.但因在組織直觀演示時耽擱了時間,又因學生的思維能力、表達能力不強,致使「活動體驗,探究新知」的教學環節時間較長.
合理設計板書是途徑\x0d板書是課堂教學的縮影,是揭示教學重點難點的示意圖,也是把握重點、難點的輻射源,板書起著提綱挈領的作用,它是在吃透教材的基礎上,根據教學要求、特點和學生的實際情況設計出來的,把提綱性、藝術性、直觀性融為一體,既起到綱舉目張的作用,又收到激發興趣、啟迪思維的效果.
精心設計練習是保障
精心設計課堂練習是提高教學質量的重要保證,學生通過練習進一步理解和鞏固知識的,把知識轉化成技能技巧,從而提高綜合運用知識的能力.所謂精心設計練習,關鍵在於「精」,精就是指要突出重點——新知識點、強化難點——易混淆、難理解處.因此在備課時,要認真鑽研教材上的習題,理解編排意圖,明確習題的目的和作用,從而設計有層次、有坡度、有針對性的練習題.
本節課由於在探究過程中,有相應的即時練習內容和游戲活動,因此我在全課練習環節中,設計了三個層次的練習內容,分別是基本練習填空、變式練習判斷、拓展練習解決問題.但因時間關系,所以只完成了即時練習,未能更好的體現這一環節的教學目的.
此外,處理重難點內容只靠教學的方式、方法和手段還不夠,還須注意:第一,教師確定的難點不宜預先告訴或暗示學生.這樣容易造成學生的心理壓力.比如「這節課的內容很困難,不容易學懂,同學們要專心」「這個問題難,不要緊張」這類「話與願違」的話不要說.第二,教學節奏宜緩慢,適當調整語速、語調和語氣.特別是講解難點內容時還要密切注視學生的表情,如果發現多數學生蹙眉茫然,或提出的問題無人作答、舉手人數寥寥無幾時,教師一方面要舒緩節奏,放慢語速,留出充分的時間讓學生思考,並及時設台階,給鋪墊.另一方面用激勵與信任的語氣及時給以鼓勵,幫助他們迎難而上.化難為易後要還原節奏,繼續講解非難點內容.