A. 初中數學 中考數學 反比例函數綜合大題專題——題型分類匯編 (
函數在初中數學中所佔比重甚大,除了壓軸題為二次函數的綜合題之外,一次函數、反比例函數也有可能單獨成題,佔有很重要的地位。
參考答案五
B. 中考數學都考什麼
一、考基礎知識,基本技能,綱本意識強。今年中考題將一如既往地採用基本題型微量的幾何作圖題,分值的分配大致是:代數佔65%,幾何點35%,其中填空選擇題佔70分上下,初三內容為考查的重難點,試題的覆蓋率約佔全卷的55%。日後,發給初三畢業班同學人手一冊的《考綱說明》將有更詳盡的標注,試題一般都是由易到難地編排。
無論哪種題型(大題)的中後期總要設計一兩道尾巴高翹的「斷梁」,下一大題又將重新從易到難,尤其是卷末的綜合壓軸題,激流險灘之中將呈現一派雄渾格調,是制卷者匠心獨具的「戲眼」。所以整個試卷若是一條路,會有五虎擋道,若是一域水,會波瀾起伏。但無論是對知識或能力的考查,都會較多地選擇課本題,或根據課本題改編,緊扣教材,呈現考試的公平性。
二、考數學思想和方法,體現數學素養。
三、考查數學思想。重點考查四種數學思想:方程思想,分類討論,數形結合及化歸思想。由於函數是高中教學內容的核心,從初高中銜接角度考慮,會將函數作為重點內容考查,而且函數思想脈絡中蘊含著極為豐富的數學思想內容,因此歷來是各省中考題中「兵家必爭之地」。
C. 中考數學有哪些題型,壓軸題主要在哪方面
給您提供了三個方案,望您滿意
一、制訂合理的復習計劃
第一輪,基礎知識系統復習。
1。按照數與代數、空間與幾何、統計與概率、實踐與綜合應用四個模塊;按照課程標准給學生重新梳理哪些知識點是識記、哪些知識點是理解、哪些知識點是運用。
2。通過典型例題、習題講解讓學生掌握學習方法,對例題、習題能舉一反三,觸類旁通,變條件、變結論、變圖形、變式子、變表達方式等。
3。定期檢測,及時反饋。練習要有針對性、典型性、層次性,不能盲目加大練習量。
第二輪,專題復習。
專題復習按中考題型分為「填空、選擇專題」「規律性專題」「探索性專題」「閱讀材料專題」「開放性專題」等。在進行這些專題復習時,根據歷年中考試卷命題的特點,精心選擇一些新穎的、有代表性的題型進行專題訓練,就中考的特點從以下幾個方面收集一些資料,進行專項訓練:①實際應用型問題;②突出科技發展、信息資源的轉化的圖表信息題;③體現自學能力考查的閱讀理解題;④考查學生應變能力的圖形變化題、開放性試題;⑤考查學生思維能力、創新意識的歸納猜想、操作探究性試題;⑥幾何代數綜合型試題等。在進行這些專題復習時,教師要引導學生從各個側面去展開,並將近幾年中考題按以上專題進行歸類、分析和研究,真正把握其命題方向和規律,然後制定應試對策。
第三輪,綜合訓練(模擬練習)。
重點是查漏補缺,提高學生綜合解題能力。通過講評訓練學生解題策略,加強解題指導,提高學生應試能力。
二、教會學生掌握復習策略,提高復習效果
1。教會學生思考。要讓學生養成獨立思考的好習慣,不要過多地依賴同學和老師。
2。精選精練反思提高:要精選精做,講效果。有所思,有所悟,便會有所發現、有所提高、有所創新。
3。建備忘錄:給自己准備一個記錄本,對一些典型題解、疑難、易錯和易忘問題以及一時解決不了的問題等,隨時記錄,以備在日常學習中加以解決。
4。注意體會、歸納題目中的數學方法和數學思想。中考數學試題特別重視突出數學思想和方法的考查,初中數學中常用的基本方法有:配方法、換元法、待定系數法、觀察法等;數學思想有:函數思想、數形結合思想、分類討論思想、化歸思想等。
5。教師要從講課復習、做練習(試題)、改正試卷、小結等方面,對學生進行學法指導,使學生在學習的每個環節上量力而行,合理利用時間,發揮學習效能。使學生學習得法,增強自信,培養興趣,做到事半功倍。
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的。對於北京中考來說,只有一道很簡單的證明題是可以不用添加輔助線的,其餘的全都涉及到輔助線的添加問題。中考對學生添線的要求還是挺高的,但添輔助線幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變數,並善於使用前題所採用的方法或結論
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。
切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題,其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
總之,中考數學壓軸題的切入點有很多,考試時並不是一定要找到那麼多,往往只需找到一兩個就行了,關鍵是找到以後一定要敢於去做。
中考有四大板塊比較容易拉分,為此,小編為考生介紹以下解題技巧。
●聯系實際問題
求解實際問題,其一般程序可分以下幾步。
審題。仔細閱讀題目,弄清題意,理順關系。讀題時要注意對語言去粗取精,提煉加工,抓住關鍵的字詞句。
建模。選取基本變數,將文字語言抽象概括成數學語言,依據有關定義、公理和數學知識,建立數學模型。
解模。根據數學知識和數學方法,求解數學模型,得到數學問題的結果。
檢驗(回歸)。把數學結果回歸到實際問題中去,通過分析、判斷、驗證得到實際問題的結果,回歸時要利用實際意義的條件進行檢驗取捨,找出正確結果。
初中階段常用的數學模型,由所建立的模型來分主要歸類為列方程(組)解應用題;列不等式(組)解應用題;建立函數的解析式、圖像、圖表解應用題、利用統計的統計量(平均數、中位數、眾數、方差)和一表五圖(統計表、扇形圖、折線圖、條形圖、頻數直方圖、頻率直方圖)解應用題;建立直角三角形用銳角三角比解應用題;建立幾何模型、三角形模型、直角坐標系模型(實際上就是線性規劃)解應用題等幾種,涵蓋了大部分中學數學模型類題型。
●幾何論證題
中考中對幾何論證題的難度有所控制,但是幾何論證題作為考查考生思維能力的一個重要方面,在中考中仍佔有相當的比例。以幾何重點知識為載體,要求考生根據題意設計有一定層次、一定長度的推理過程,以檢測考生的邏輯思維能力、基本圖形分析能力和數學語言的表達能力,仍是中考命題的重點之一。幾何論證題突出了對幾何基本圖形掌握情況的考查、數學邏輯思維能力和數學表達能力的考查。試題中出現的幾何圖形全是學生平時學習中常見的基本圖形。填輔助線也體現出常規要求。幾何證明分層設置,立足於常規思路掌握情況的考查。重點考查學生解決問題的方法和幾何語言表達的邏輯性、准確性。
所有試題,都注重對基礎知識、基本技能和基本思想方法的考查,學生若沒有扎實的數學基礎,靠猜題押題,臨時突擊,是很難取得好成績的。因此,各位考生必須做好基本概念及其性質、基本技能和基本思想方法的學習,做到真正理解和掌握,並形成合理的網路結構。注重解幾何題的常規思路和常規輔助線的添加。注重基本推理、書寫、畫圖等技能、探索歸律、積累幾何學習中的通性、通法。注意幾何語言表達的准確性和規范性。另外,幾何計算要與幾何論證並重。由於幾何論證題是思維訓練題,它是依賴學生長期堅持的思維訓練而不能靠死記硬背、臨時突擊完成的。建議考生每天做一到二題幾何論證題,挑選那些一讀題不會做的題進行訓練,可以自己獨立思考,也可以同學之間相互研討,有困難也可以請教老師指點。但是必須自我反思,總結出幾何論證題的一般規律:牢記幾何定理、熟記基本圖形、掌握添線規律、精確簡潔表達。只要我們在大腦中儲存了一定數量的基本圖形和基本方法,在考試中就能激活它們從而做到迎刃而解。
●函數綜合題
函數描述了自然界中量的依存關系,反映了一個事物隨著另一個事物變化而變化的關系和規律。函數的思想方法就是提取問題的數學特徵,用聯系的變化的觀點提出數學對象,抽象其數學特徵,建立函數關系,並利用函數的性質研究、解決問題的一種數學思想方法。
函數的思想方法主要包括以下幾方面:運用函數的有關性質解決函數的某些問題;以運動變化的觀點,分析和研究具體問題中的數量關系,建立函數關系,運用函數的知識,使問題得到解決;經過適當的數學變化和構造,使一個非函數的問題轉化為函數的形式,並運用函數的性質來處理這一問題。
在近兩年的中考中,函數綜合題佔了一定的比重,特別是在最後拉分的50分中更是顯得尤為重要。2006年的中考綜合題中函數綜合題就有兩題佔了24分。
那麼函數綜合題到底在中考中以哪些形式出現呢?
是先給定直角坐標系和幾何圖形,求(已知)函數的解析式(即在求解前已知函數的類型),然後進行圖形的研究,求點的坐標或研究圖形的某些性質。初中已知函數有①一次函數(包括正比例函數)和常值函數,它們所對應的圖像是直線;②反比例函數,它所對應的圖像是雙曲線;③二次函數,它所對應的圖像是拋物線。求已知函數的解析式主要方法是待定系數法,關鍵是求點的坐標,而求點的坐標基本方法是幾何法(圖形法)和代數法(解析法)。此類題基本在第24題,滿分12分,基本分2-3小題來呈現。
●幾何型綜合題
此類題在近兩年的中考中往往有起點不高、但要求較全面的特點。常常以數與形、代數計算與幾何證明、相似三角形的判定與性質、畫圖分析與列方程求解、勾股定理與函數、圓和三角相結合的綜合性試題。同時會考查學生初中數學中最重要的數學思想:數形結合的思想、分類討論的思想和幾何運動變化等數學思想。
是先給定幾何圖形,根據已知條件進行計算,然後有動點(或動線段)運動,對應產生線段、面積等的變化,求對應的(未知)函數的解析式(即在沒有求出之前不知道函數解析式的形式是什麼)和求函數的定義域,最後根據所求的函數關系進行探索研究,一般有:在什麼條件下圖形是等腰三角形、直角三角形、四邊形是菱形、梯形等或探索兩個三角形滿足什麼條件相似等或探究線段之間的位置關系等或探索麵積之間滿足一定關系求x的值等和直線(圓)與圓的相切時求自變數的值等。求未知函數解析式的關鍵是列出包含自變數和因變數之間的等量關系(即列出含有x、y的方程),變形寫成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和復合法(列出含有x和y和第三個變數的方程,然後求出第三個變數和x之間的函數關系式,代入消去第三個變數,得到y=f(x)的形式),當然還有參數法,這個已超出初中數學教學要求。找等量關系的途徑在初中主要有利用勾股定理、平行線截得比例線段、三角形相似、面積相等方法。求定義域主要是尋找圖形的特殊位置(極限位置)和根據解析式求解。而最後的探索問題千變萬化,但少不了對圖形的分析和研究,用幾何和代數的方法求出x的值。幾何型綜合題基本在第25題做為壓軸題出現,滿分14分,一般分三小題呈現。
D. 初中數學有多少種題型
1.數形結合思想
就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義;使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。
2.聯系與轉化的思想
事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。
在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3.分類討論的思想
在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查;這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4.待定系數法
當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。
5.配方法
就是把一個代數式設法構造成平方式,然後再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
6.換元法
在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7.分析法
在研究或證明一個命題時,由結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」
8.綜合法
在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為「由因導果」
9.演繹法
由一般到特殊的推理方法。
10.歸納法
由一般到特殊的推理方法。
11.類比法
眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。
函數、方程、不等式
常用的數學思想方法:
⑴數形結合的思想方法。
⑵待定系數法。
⑶配方法。
⑷聯系與轉化的思想。
⑸圖像的平移變換。
證明角的相等
1.對頂角相等。
2.角(或同角)的補角相等或餘角相等。
3.兩直線平行,同位角相等、內錯角相等。
4.凡直角都相等。
5.角平分線分得的兩個角相等。
6.同一個三角形中,等邊對等角。
7.等腰三角形中,底邊上的高(或中線)平分頂角。
8.平行四邊形的對角相等。
9.菱形的每一條對角線平分一組對角。
10.等腰梯形同一底上的兩個角相等。
11.關系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所 對的圓心角相等。
12.圓內接四邊形的任何一個外角都等於它的內對角。
13.同弧或等弧所對的圓周角相等。
14.弦切角等於它所夾的弧對的圓周角。
15.同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。
16.全等三角形的對應角相等。
17.相似三角形的對應角相等。
18.利用等量代換。
19.利用代數或三角計算出角的度數相等
20.切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。
證明直線的平行或垂直
1.證明兩條直線平行的主要依據和方法
⑴定義、在同一平面內不相交的兩條直線平行。
⑵平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。
⑶平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。
⑷平行四邊形的對邊平行。
⑸梯形的兩底平行。
⑹三角形(或梯形)的中位線平行與第三邊(或兩底)
⑺一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。
2.證明兩條直線垂直的主要依據和方法
⑴兩條直線相交所成的四個角中,有一個是直角時,這兩條直線互相垂直。
⑵直角三角形的兩直角邊互相垂直。
⑶三角形的兩個銳角互余,則第三個內角為直角。
⑷三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。
⑸三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。
⑹三角形(或多邊形)一邊上的高垂直於這邊。
⑺等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。
⑻矩形的兩臨邊互相垂直。
⑼菱形的對角線互相垂直。
⑽平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。
⑾半圓或直徑所對的圓周角是直角。
⑿圓的切線垂直於過切點的半徑。
⒀相交兩圓的連心線垂直於兩圓的公共弦。
E. 初中數學中考常考到哪些題型
選擇,填空,最基礎的題型。最後一道是比較難得。然後就是計算,考察的是分式化簡求知類型題,或是分式方程,然後就是簡答,圓的證明,三角函數應用。函數求解析式,一道圖形題,概率題。然後就是方程,列方程,求利潤,倒數第二道題就是動點證明,最後一道則是二次函數問題,比較難得,只要前面基礎的答好了,數學高分也是很簡單的,謝謝,望採納。記住,多做題,多總結,多思考。。。
F. 初三的數學主要是學什麼
初三數學要學習的內容主要包括:直角三角形的邊角關系、反比例函數、二次函數、圓.知識內容看似不多,但是都是中考數學的重點和難點.首先,反比例函數與幾何綜合在中考選擇填空題中,出現壓軸題還是非常正常的;再者,對圓來講,它是平面幾何中知識最多的幾何圖形,
涉及的考點和題型也是最多的,在中考證明題中,難度一定不會小;最後,二次函數,在中考數學中以壓軸題的形式出現,幾乎可以算得上必考的壓軸題了.綜合上述所講,初三的學習內容難度不小,對中考起決定性的作用.
應該怎麼學
加強基礎:無論學什麼或者考什麼,都離不開基礎知識,在學習之初抓住基礎,不可一味求難.
適當拓展:掌握基礎為前提,進行相應的拓展.例如反比例函數與幾何綜合的中考題型可以盡早去接觸,二次函數壓軸題型也要經常去訓練,這樣才不至於時間太緊張而錯失學習的機會.
G. 初中數學常見題型有哪些
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%
利息=本金×利率×時間
H. 中考數學有哪些題型
一題選擇12道
每題2分
二題填空6道
每題三分
三題計算
一般兩個
15分左右
後面大題,一般函數的兩個,圓的一個,四邊形證明的一個,數據整理的一個,關於勾股定理的一個,差不多了!
I. 初中數學題型有哪些
復習核心
注重課本知識,查漏補缺
注重課堂學習,提高效率
注意知識的遷移,學會融會貫通
試卷的基本情況
1.試卷結構:由填空、選擇、解答題等28個題目組成。
2.考試內容:根據《數學課程標准》要求,將對「數與代數」「空間與圖形」 「統計與概率」「實踐與綜合應用」四個領域的知識進行考查。按知識版塊進行系統歸納代數具體為:(1)實數的概念及其運算;(2)代數式的分類、概念及其運算;(3)方程(組)的概念、性質、解法及應用:(4)不等式(組)的概念、性質、解法:(5)函數的概念,幾種常見函數的圖象及性質;(6)統計和概率。幾何知識歸納為:(1)圖形的初步認識;(2)三角形的概念、分類、定理及其應用;(3)四邊形的概念、定理及其應用;(4)圖形與變換;(5)相似形的概念、定理及其應用;(6)解直角三角形;(7)圓的概念、定理及其應用;
3.試題模式:以2008年西寧市數學第一次模擬考試試卷為基本樣式。
4.難度的比例分配:試卷滿分為120分,簡單題型佔60%,中等題型佔30%,難度題佔10%。
中考要求
中考要面向全體考生,以數與代數、空間與圖形、統計與概率、實踐與綜合應用內容為依據,關注學生對數學的基本認識,關注學生的數學活動過程、關注學生的數學思考、關注學生解決問題的能力、關注學生對數學與現實生活以及與其他學科知識之間聯系的認識等。充分體現新課標理念,力求客觀、公正、全面、准確地評價學生數學學習狀況。
命題規律
1.重視數學基礎知識的認識和基本技能、基本思想的考查。
2.重視數學思想和方法的考查。
3.重視實踐能力和創新意識的考查。
復習的基本原則
以《課程標准》和數學教材為依據,立足於掌握和鞏固基本知識和基本技能,強化主幹知識,注重教材的重點和難點,加強對薄弱環節的復習,及時查缺補漏,注重知識應用能力,培養靈活及綜合解決問題的能力。
復習中的幾點建議
1.注重課本知識,查漏補缺。全面復習基礎知識,加強基本技能訓練的第一階段的復習工作我們已經結束了,在第二階段的復習中,反思和總結上一輪復習中的遺漏和缺憾,會發現有些知識還沒掌握好,解題時還沒有思路,因此要做到邊復習邊將知識進一步歸類,加深記憶;還要進一步理解概念的內涵和外延,牢固掌握法則、公式、定理的推導或證明,進一步加強解題的思路和方法;同時還要查找一些類似的題型進行強化訓練,要及時有目的有針對性的補缺補漏,直到自己真正理解會做為止,決不要輕易地放棄。
這個階段尤其要以課本為主進行復習,因為課本的例題和習題是教材的重要組成部分,是數學知識的主要載體。吃透課本上的例題、習題,才能有利於全面、系統地掌握數學基礎知識,熟練數學基本方法,以不變應萬變。所以在復習時,我們要學會多方位、多角度審視這些例題習題,從中進一步清晰地掌握基礎知識,重溫思維過程,鞏固各類解法,感悟數學思想方法。復習形式是多樣的,尤其要提高復習效率。
另外,現在中考命題仍然以基礎題為主,有些基礎題是課本上的原題或改造了的題,有的大題雖是「高於教材」,但原型一般還是教材中的例題或習題,是課本中題目的引申、變形或組合,課本中的例題、練習和作業題不僅要理解,而且一定還要會做。同時,對課本上的《閱讀材料》《課題研究》《做一做》《想一想》等內容,我們也一定要引起重視。
2.注重課堂學習,提高效率。在任課老師的指導下,通過課堂教學,要求同學們掌握各知識點之間的內在聯系,理清知識結構,形成整體的認識,通過對基礎知識的系統歸納,解題方法的歸類,在形成知識結構的基礎上加深記憶,至少應達到使自己准確掌握每個概念的含義,把平時學習中的模糊概念搞清楚,使知識掌握的更扎實的目的,要達到使自己明確每一個知識點在整個初中數學中的地位、聯系和應用的目的。上課要會聽課,會記錄,必須要把握每一節課所講的知識重點,抓住關鍵,解決疑難,提高學習效率,根據個人的具體情況,課堂上及時查漏補缺。
3.夯實基礎知識,學會思考。在歷年的數學中考試題中,基礎分值占的最多,再加上部分中檔題及較難題中的基礎分值,因此所佔分值的比例就更大。我們必須扎扎實實地夯實基礎,通過系統的復習,我們對初中數學知識達到「理解」和「掌握」的要求,在應用基礎知識時能做到熟練、正確和迅速。
有的考題會對需要考查的知識和方法創設一個新的問題情境,特別是一些需要有較高區分度的試題更是如此;每個中檔以上難度的數學試題通常要涉及多個知識點、多種數學思想方法,或者在知識交匯點上巧妙設計試題。因此,我們每一個同學要學會思考,老師上課教給我們的是思考問題的角度、方法和策略,我們要用學到的方法和策略,在解決具有新情境問題的過程中,感悟出如何進行正確的思考。
4.注意知識的遷移,學會融會貫通。課本中的某些例題、習題,並不是孤立的,而是前後聯系、密切相關的,其他學科的知識也和數學有著千絲萬縷的聯系,我們要學會從思維發展的最近點出發,去發現、研究和展示這些知識的內在聯系,這樣做不僅有助於自己深刻理解課本知識,有利於強化知識重點,更重要的是能有效地促進自己數學知識網路和方法體系的構建,使知識和能力產生良性遷移,達到觸類旁通的效果,通過探究課本典型例題、習題的內在聯系,讓我們在深刻理解課本知識的同時,更有效地形成知識網路與方法體系。例如一元二次方程的根的判別式,不但可以解決根的判定和已知根的情況求字母系數,還可以解決二次三項式的因式分解、方程組的根的判定及二次函數圖象與橫軸的交點坐標。
5.復習形成梯度,選擇典型習題。如果說第一階段是中考復習的基礎,是重點,側重了雙基訓練,那麼第二階段的復習就是第一階段復習的延伸和提高,這個階段的練習題要選擇有一些難度的題,但又不是越難越好,難題做的越多越好,做題要有典型性,代表性,所選擇的難題是自己能夠逐步完成的,這樣才能既激發自己解難求進的學習慾望,又能使自己從解決較難問題中看到自己的力量,增強學習的信心,產生更強的求知慾望。
6.重視基礎知識,注重解題方法。基礎知識就是初中數學課程中所涉及的概念、公式、公理、定理等。要求同學們掌握各知識點之間的內在聯系,理清知識結構,形成整體的認識,並能綜合運用。每年的中考數學會出現一兩道難度較大,綜合性較強的數學問題,解決這類問題所用到的知識都是同學們學過的基礎知識,並不依賴於那些特別的,沒有普遍性的解題技巧。
中考數學命題除了著重考查基礎知識外,還十分重視對數學方法的考查,如配方法,待定系數法、判別式法等操作性較強的數學方法。在復習時應對每一種方法的內涵,它所適應的題型,包括解題步驟都應該熟練掌握。
7.形成數學思想,學會運用。數學思想的進一步形成和繼續培養是十分重要的,因為它的應用是十分廣泛的。比如方程思想、特殊和一般的思想、數形結合的思想,函數思想、分類討論思想、化歸與轉化的思想等,我們要加深對這些思想的深刻理解,目前要多做一些相關內容的題目;從近幾年中考情況看,最後的「壓軸題」往往與此類題型有關,不少同學解這類問題時,要麼只注意到代數知識,要麼只注意到幾何知識,不會熟練地進行代數知識與幾何知識的相互轉換。