Ⅰ 組合c的計算公式是什麼
排列組合c的公式:C(n,m)=A(n,m)/m!=n!/m!(n-m)!與C(n,m)=C(n,n-m)。(n為下標,m為上標)。例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列組合c計算方法:C是從幾個中選取出來,不排列,只組合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
注意事項:
1、不同的元素分給不同的組,如果有出現人數相同的這樣的組,並且該組沒有名稱,則需要除序,有幾個相同的就除以幾的階乘,如果分的組有名稱,則不需要除序。
2、隔板法就是在n個元間的n-1個空中插入若干個隔板,可以把n個元素分成(n+1)組的方法,應用隔板法必須滿足這n個元素必須互不相異,所分成的每一組至少分得一個元素,分成的組彼此相異。
3、對於帶有特殊元素的排列組合問題,一般應先考慮特殊元素,再考慮其他元素。
Ⅱ 數學里有種C下面個數字,上面個數字,這叫什麼來著,怎麼算
排列組合中的組合C(3,5)(上面是3,下面是5)=5×4×3/(3×2×1)表示的意義是從五個人裡面選三個人,共有多少種選法。
Ⅲ 排列組合公式誰知道,就是c幾幾的,怎麼算
大寫字母C,下標n,上標m,表示從n個元素中取出m 個元素的不同的方法數.如從5個人中選2人去開會,不同的選法有C(5,2)=10種。
C(n,m)的計算方法是C(n,m)=n!/[m!(n-m)!]=n*(n-1)*...*(n-m+1)/[1*2*...*m],如C(5,2)=[5*4]/[1*2]=10。
(3)數學組合題怎麼計算c下面的擴展閱讀:
1772年,法國數學家范德蒙德(Vandermonde, A. - T.)以[n]p表示由n個不同的元素中每次取p個的排列數。
瑞士數學家歐拉(Euler, L.)則於1771年以 及於1778年以 表示由n個不同元素中每次取出p個元素的組合數。
1830年,英國數學家皮科克(Peacock, G)引入符號Cr表示n個元素中每次取r個的組合數。
1869年或稍早些,劍橋的古德文以符號nPr 表示由n個元素中每次取r個元素的排列數,這用法亦延用至今。按此法,nPn便相當於n!。
1872年,德國數學家埃汀肖森(Ettingshausen,B. A. von)引入了符號(np)來表示同樣的意義,這組合符號(Signs of Combinations)一直沿用至今。
1880年,鮑茨(Potts , R.)以nCr及nPr分別表示由n個元素取出r個的組合數與排列數。
1886年,惠特渥斯(Whit-worth, A. W.)用Cnr和Pnr表示同樣的意義,他還用Rnr表示可重復的組合數。
1899年,英國數學家、物理學家克里斯托爾(Chrystal,G.)以nPr,nCr分別表示由n個不同元素中每次取出r個不重復之元素的排列數與組合數,並以nHr表示相同意義下之可重復的排列數,這三種符號也通用至今。
1904年,德國數學家內托(Netto, E.)為一本網路辭典所寫的辭條中,以Arn表示上述nPr之意,以Crn表示上述nCr之意,後者亦也用符號(n r)表示。這些符號也一直用到現代。
參考資料來源:網路-排列組合
Ⅳ c下4上2怎麼算
數學符號C下面4上面2的答案是6。
解題思路:
數學符號C下面4上面2的演算法,屬於組合公式的求解。
1、根據組合公式
拓展資料:
C表示組合,下標是n就用n乘(n-1)(n-2)(n-3)... 需要乘多少個呢?看上標,上標是2,所以一共需要2個數相乘,即n(n-1),所以得來了4X3。舉個例子:C(6,3),上標是3,就用下標6開始連乘3個數6X5X4。
算到這步完成了一半,還要用上面的結果除以一個數,假設上標是m,就用m(m-1)(m-2)(m-3)... 一直乘到最後個數是1為止。舉個例子:上標是4,那個被除的數就是4X3X2X1=24,上標是6,被除數就是6X5X4X3X2X1=720
最後用第一步的結果除以第二步的結果就等於C(4,2)的運算結果6。
語言描述看起來多,只要你把我的話看明白,實際操作很簡單。
補充:
排列:
A(4,2)=4X3
A(6,6)=6X5X4X3X2X1
4是下面那個腳碼,2是上面那個數,下面那個數代表從這個數開始乘,上面那個數代表一共有多少個數相乘。乘的規律就是後面個數比前面個數小1。
組合:
C(4,2)=(4X3)/(2X1)
C(6,6)=(6X5X4X3X2X1)/(6X5X4X3X2X1)
組合的演算法第一步和排列一模一樣,比排列多一步就是要除以一個數,被除的這個數就是上面那個數字一直乘到1的積。
Ⅳ 組合公式,C上下兩個數怎麼求,A上下兩個數怎麼求
這個在高中數學課本上就有相關公式啊,組合數就是相應的排列數除以其序數。比如,C(上2下5)=A(上2下5)除以A(上2下2),其中A上2下5= 5乘4,A上2下2= 2乘1 類似的演算法你自己按部就班依葫蘆畫瓢就可以。
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示。
基本計數原理
加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。
Ⅵ 排列組合的問題C(n,0)怎麼計算
排列組合中的c(n,0)問題,排列中c(n,0)=1,組合中A(n,0)=1
一、排列和組合的概念
排列:從n個不同元素中,任取m個元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。
組合:從n個不同元素種取出m個元素拼成一組,稱為從n個不同元素取出m個元素的一個組合。
二、解決此類問題的方法
1.捆綁法
所謂捆綁法,指在解決對於某幾個元素要求相鄰的問題時,先整體考慮,將相鄰元素視作一個整體參與排序,然後再單獨考慮這個整體內部各元素間順序。注意:其首要特點是相鄰,其次捆綁法一般都應用在不同物體的排序問題中。
例:5個男生和3個女生排成一排,3個女生必須排在一起,有多少種不同排法?
A.240 B.320 C.450 D.480
正確答案【B】
解析:採用捆綁法,把3個女生視為一個元素,與5個男生進行排列,共有 A(6,6)=6x5x4x3x2種,然後3個女生內部再進行排列,有A(3,3)=6種,兩次是分步完成的,應採用乘法,所以排法共有:A(6,6) ×A(3,3) =320(種)。
2.插空法
所謂插空法,指在解決對於某幾個元素要求不相鄰的問題時,先將其它元素排好,再將指定的不相鄰的元素插入已排好元素的間隙或兩端位置。
注意:a.首要特點是不鄰,其次是插空法一般應用在排序問題中。
b.將要求不相鄰元素插入排好元素時,要注釋是否能夠插入兩端位置。
c.對於捆綁法和插空法的區別,可簡單記為「相鄰問題捆綁法,不鄰問題插空法」。
例:若有甲、乙、丙、丁、戊五個人排隊,要求甲和乙兩個人必須不站在一起,且甲和乙不能站在兩端,則有多少排隊方法?
A.9 B.12 C.15 D.20
正確答案【B】
解析:先排好丙、丁、戊三個人,然後將甲、乙插到丙、丁、戊所形成的兩個空中,因為甲、乙不站兩端,所以只有兩個空可選,方法總數為A(3,3)×A(2,2)=12種。
3.插板法
所謂插板法,指在解決若干相同元素分組,要求每組至少一個元素時,採用將比所需分組數目少1的板插入元素之間形成分組的解題策略。
注意:其首要特點是元素相同,其次是每組至少含有一個元素,一般用於組合問題中。
例:將9個完全相同的球放到3個不同的盒子中,要求每個盒子至少放一個球,一共有多少種方法?
A.24 B.28 C.32 D.48
正確答案【B】
解析:解決這道問題只需要將9個球分成三組,然後依次將每一組分別放到一個盒子中即可。因此問題只需要把9個球分成三組即可,於是可以將9個球排成一排,然後用兩個板插到9個球所形成的空里,即可順利的把9個球分成三組。其中第一個板前面的球放到第一個盒子中,第一個板和第二個板之間的球放到第二個盒子中,第二個板後面的球放到第三個盒子中去。因為每個盒子至少放一個球,因此兩個板不能放在同一個空里且板不能放在兩端,於是其放板的方法數是C(8,2)=28種。
4.特殊優先法
特殊元素,優先處理;特殊位置,優先考慮。對於有附加條件的排列組合問題,一般採用:先考慮滿足特殊的元素和位置,再考慮其它元素和位置。
例:從6名志願者中選出4人分別從事翻譯、導游、導購、保潔四項不同的工作,若其中甲、乙兩名志願者都不能從事翻譯工作,則不同的選派方案共有( )
(A)280種
(B)240種
(C)180種
(D)96種
正確答案:【B】
解析:由於甲、乙兩名志願者都不能從事翻譯工作,所以翻譯工作就是「特殊」位置,因此翻譯工作從剩下的四名志願者中任選一人有C(4,1)=4種不同的選法,再從其餘的5人中任選3人從事導游、導購、保潔三項不同的工作有A(5,3)=10種不同的選法,所以不同的選派方案共有 C(4,1)×A(5,3)=240種,所以選B。
Ⅶ 概率論,一個C上下個一個數字。怎麼算啊
C(n,m)=C(n,n-m)。(n≥m)
此外規定0!=1(n!表示n(n-1)(n-2)...1,也就是7!=7x6x5x4x3x2x1
Ⅷ 關於數學排列組合,A什麼的C什麼的到底怎麼算舉個例子。。
A開頭的叫排列,C開頭的叫組合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
註:當且僅當兩個排列的元素完全相同,且元素的排列順序也相同,則兩個排列相同。例如,abc與abd的元素不完全相同,它們是不同的排列;又如abc與acb,雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列。
Ⅸ 數學概率中的C多少多少怎麼算,比如C上面1下面4,C上面2下面16,C上面3下面20
c(下面是總數,上面是出現的次數)。
如:c(上面是2,下面是3)=(3*2)/(2*1)=3。上面的數規定幾個數相乘,數是從大往小。
從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重復地選取m個元素的一個組合。所有這樣的組合的總數稱為組合數,這個組合數的計算公式為
(9)數學組合題怎麼計算c下面的擴展閱讀
排列組合計算方法如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6