1. 八年級上冊數學幾何題做輔助線的技巧
常見輔助線的方法:(最常見的就是連接特殊兩點,作垂線和平行線(中位線)等)
1) 遇到等腰三角形,可作底邊上的高,利用「三線合一」的性質解題,思維模式是全等變換中的「對折」。
2) 遇到三角形的中點或中線,可作中位線或倍長中線,構造全等三角形,利用的思維模式是全等變換中的「旋轉」。必要時也可直接旋轉。
3) 遇到角平分線,可以在角平分線上一點像角的兩邊作垂線,利用的思維模式是三角形全等變換中的「對折」,所考知識點常常是角平分線的性質定理或逆定理。
4) 截長補短法,具體做法是在某條線段上截取一條線段與特定的線段相等,或是將某條線段延長,使之與特定線段相等,再利用三角形全等的相關性質加以說明。這種方法適合於證明線段的和,差,倍,分等類的題目。
5) 等面積法:利用三角形(或其他圖形)面積不同求法來解決線段之間的問題。
6) 遇到線段的垂直平分線,連接線段的垂直平分線上的點到線段兩端的距離相等。
7) 遇到直角三角形,作直角三角形斜邊上的中線。
8) 在有特殊角的情況下,考慮作等邊三角形
2. 八年級數學上冊幾何作輔助線的方法總結
人說幾何很困難,難點就在輔助線。
輔助線,如何添?把握定理和概念。
還要刻苦加鑽研,找出規律憑經驗。
圖中有角平分線,可向兩邊作垂線。
角平分線平行線,等腰三角形來添。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線加一倍。
梯形裡面作高線,平移一腰試試看。
等積式子比例換,尋找相似很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,弦高公式是關鍵。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
要想作個外接圓,各邊作出中垂線。
還要作個內切圓,內角平分線夢園。
如果遇到相交圓,不要忘作公共弦。
若是添上連心線,切點肯定在上面。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。
(1)按定義添輔助線:
如證明二直線垂直可延長使它們 相交後證交角為90°,
證線段倍半關系可倍線段取中點或半線段加倍,
證角的倍半關系也可類似添輔助線
…………
(2)按基本圖形添輔助線:
每個幾何定理都有與它相對應的幾何圖形,我們 把它叫做基本圖形,添輔助線往往是具有基本圖形的性質而基本圖形不完整時補完整基本圖形,因此「添線」應該叫做「補圖」!這樣可防止亂添線,添輔助線也有規律可循。
舉例如下:
平行線是個基本圖形:
當幾何中出現平行線時添輔助線的關鍵是添與二條平行線都相交的等第三條直線
等腰三角形是個簡單的基本圖形:
當幾何問題中出現一點發出的二條相等線段時往往要補完整等腰三角形。
出現角平分線與平行線組合時可延長平行線與角的二邊相交得等腰三角形。
等腰三角形中的重要線段是個重要的基本圖形:
出現等腰三角形底邊上的中點添底邊上的中線;
出現角平分線與垂線組合時可延長垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。
直角三角形斜邊上中線基本圖形
出現直角三角形斜邊上的中點往往添斜邊上的中線
出現線段倍半關系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。
三角形中位線基本圖形
幾何問題中出現多個中點時往往添加三角形中位線基本圖形進行證明當有中點沒有中位線時則添中位線,當有中位線三角形不完整時則需補完整三角形
當出現線段倍半關系且與倍線段有公共端點的線段帶一個中點則可過這中點添倍線段的平行線得三角形中位線基本圖形。
當出現線段倍半關系且與半線段的端點是某線段的中點,則可過帶中點線段的端點添半線段的平行線得三角形中位線基本圖形。
全等三角形:
全等三角形有軸對稱形,中心對稱形,旋轉形與平移形等
如果出現兩條相等線段或兩個檔相等角關於某一直線成軸對稱就可以添加軸對稱形全等三角形:或添對稱軸,或將三角形沿對稱軸翻轉。
當幾何問題中出現一組或兩組相等線段位於一組對頂角兩邊且成一直線時可添加中心對稱形全等三角形加以證明,添加方法是將四個端點兩兩連結或過二端點添平行線
…………
相似三角形:
相似三角形有平行線型(帶平行線的相似三角形),相交線型,旋轉型
當出現相比線段重疊在一直線上時(中點可看成比為1)可添加平行線得平行線型相似三角形。若平行線過端點添則可以分點或另一端點的線段為平行方向,這類題目中往往有多種淺線方法。
…………
特殊角直角三角形
當出現30,45,60,135,150度特殊角時可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:√2;30度角直角三角形三邊比為1:2:√3進行證明
半圓上的圓周角
出現直徑與半圓上的點,添90度的圓周角
出現90度的圓周角則添它所對弦---直徑
平面幾何中總共只有二十多個基本圖形就像房子不外有一砧,瓦,水泥,石灰,木等組成一樣
下面提供三角形中位線基本圖形的幾種添線圖形(色線為輔助線)
3. 初二數學怎樣熟練掌握做輔助線的方法
初中數學輔助線
1.三角形問題添加輔助線方法
方法1:有關三角形中線的題目,常將中線加倍。含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結論恰當的轉移,很容易地解決了問題。
方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質和題中的條件,構造出全等三角形,從而利用全等三角形的知識解決問題。
方法3:結論是兩線段相等的題目常畫輔助線構成全等三角形,或利用關於平分線段的一些定理。
方法4:結論是一條線段與另一條線段之和等於第三條線段這類題目,常採用截長法或補短法,所謂截長法就是把第三條線段分成兩部分,證其中的一部分等於第一條線段,而另一部分等於第二條線段。
2.平行四邊形中常用輔助線的添法
平行四邊形(包括矩形、正方形、菱形)的兩組對邊、對角和對角線都具有某些相同性質,所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構成三角形的全等、相似,把平行四邊形問題轉化成常見的三角形、正方形等問題處理,其常用方法有下列幾種,舉例簡解如下:
(1)連對角線或平移對角線:
(2)過頂點作對邊的垂線構造直角三角形
(3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線
(4)連接頂點與對邊上一點的線段或延長這條線段,構造三角形相似或等積三角形。
(5)過頂點作對角線的垂線,構成線段平行或三角形全等.
3.梯形中常用輔助線的添法
梯形是一種特殊的四邊形。它是平行四邊形、三角形知識的綜合,通過添加適當的輔助線將梯形問題化歸為平行四邊形問題或三角形問題來解決。輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:
(1)在梯形內部平移一腰。
(2)梯形外平移一腰
(3)梯形內平移兩腰
(4)延長兩腰
(5)過梯形上底的兩端點向下底作高
(6)平移對角線
(7)連接梯形一頂點及一腰的中點。
(8)過一腰的中點作另一腰的平行線。
(9)作中位線
當然在梯形的有關證明和計算中,添加的輔助線並不一定是固定不變的、單一的。通過輔助線這座橋梁,將梯形問題化歸為平行四邊形問題或三角形問題來解決,這是解決問題的關鍵。
作輔助線的方法
一:中點、中位線,延線,平行線。
如遇條件中有中點,中線、中位線等,那麼過中點,延長中線或中位線作輔助線,使延長的某一段等於中線或中位線;另一種輔助線是過中點作已知邊或線段的平行線,以達到應用某個定理或造成全等的目的。
二:垂線、分角線,翻轉全等連。
如遇條件中,有垂線或角的平分線,可以把圖形按軸對稱的方法,並藉助其他條件,而旋轉180度,得到全等形,,這時輔助線的做法就會應運而生。其對稱軸往往是垂線或角的平分線。
三:邊邊若相等,旋轉做實驗。
如遇條件中有多邊形的兩邊相等或兩角相等,有時邊角互相配合,然後把圖形旋轉一定的角度,就可以得到全等形,這時輔助線的做法仍會應運而生。其對稱中心,因題而異,有時沒有中心。故可分「有心」和「無心」旋轉兩種。
四:造角、平、相似,和、差、積、商見。
如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關。在製造兩個三角形相似時,一般地,有兩種方法:第一,造一個輔助角等於已知角;第二,是把三角形中的某一線段進行平移。故作歌訣:「造角、平、相似,和差積商見。」
五:面積找底高,多邊變三邊。
如遇求面積,(在條件和結論中出現線段的平方、乘積,仍可視為求面積),往往作底或高為輔助線,而兩三角形的等底或等高是思考的關鍵。
如遇多邊形,想法割補成三角形;反之,亦成立。
另外,我國明清數學家用面積證明勾股定理,其輔助線的做法,即「割補」有二百多種,大多數為「面積找底高,多邊變三邊」。
初中幾何常見輔助線口訣
人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。
還要刻苦加鑽研,找出規律憑經驗。
三角形
圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。
線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
四邊形
平行四邊形出現,對稱中心等分點。梯形問題巧轉換,變為△和□。
平移腰,移對角,兩腰延長作出高。如果出現腰中點,細心連上中位線。
上述方法不奏效,過腰中點全等造。證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
請採納,你的採納是我上進的動力!可以追問,一直到懂!!!
4. 初中數學幾何證明題輔助線怎麼畫有什麼技巧嗎
人說幾何很困難,難點就在輔助線。
輔助線,如何添?把握定理和概念。
還要刻苦加鑽研,找出規律憑經驗。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。
幾何證題難不難,關鍵常在輔助線;
知中點、作中線,中線處長加倍看;
底角倍半形分線,有時也作處長線;
線段和差及倍分,延長截取證全等;
公共角、公共邊,隱含條件須挖掘;
全等圖形多變換,旋轉平移加折疊;
中位線、常相連,出現平行就好辦;
四邊形、對角線,比例相似平行線;
梯形問題好解決,平移腰、作高線;
兩腰處長義一點,亦可平移對角線;
正餘弦、正餘切,有了直角就方便;
特殊角、特殊邊,作出垂線就解決;
實際問題莫要慌,數學建模幫你忙;
圓中問題也不難,下面我們慢慢談;
弦心距、要垂弦,遇到直徑周角連;
切點圓心緊相連,切線常把半徑添;
兩圓相切公共線,兩圓相交公共弦;
切割線,連結弦,兩圓三圓連心線;
基本圖形要熟練,復雜圖形多分解;
以上規律屬一般,靈活應用才方便。
5. 數學初二上常見引輔助線的方法
一、見中點引中位線,見中線延長一倍
在幾何題中,如果給出中點或中線,可以考慮過中點作中位線或把中線延長一倍來解決相關問題。
二、
在比例線段證明中,常作平行線。
作平行線時往往是保留結論中的一個比,然後通過一個中間比與結論中的另一個比聯系起來。
三、對於梯形問題,常用的添加輔助線的方法有
1、過上底的兩端點向下底作垂線
2、過上底的一個端點作一腰的平行線
3、過上底的一個端點作一對角線的平行線
4、過一腰的中點作另一腰的平行線
5、過上底一端點和一腰中點的直線與下底的延長線相交
6、作梯形的中位線
7、延長兩腰使之相交
四、在解決圓的問題中
1、兩圓相交連公共弦。
2、兩圓相切,過切點引公切線。
3、見直徑想直角
4、遇切線問題,連結過切點的半徑是常用輔助線
5、解決有關弦的問題時,常常作弦心距
6. 數學做輔助線技巧
常見輔助線的方法:(最常見的就是連接特殊兩點,作垂線和平行線(中位線)等)
1)
遇到等腰三角形,可作底邊上的高,利用「三線合一」的性質解題,思維模式是全等變換中的「對折」。
2)
遇到三角形的中點或中線,可作中位線或倍長中線,構造全等三角形,利用的思維模式是全等變換中的「旋轉」。必要時也可直接旋轉。
3)
遇到角平分線,可以在角平分線上一點像角的兩邊作垂線,利用的思維模式是三角形全等變換中的「對折」,所考知識點常常是角平分線的性質定理或逆定理。
4)
截長補短法,具體做法是在某條線段上截取一條線段與特定的線段相等,或是將某條線段延長,使之與特定線段相等,再利用三角形全等的相關性質加以說明。這種方法適合於證明線段的和,差,倍,分等類的題目。
5)
等面積法:利用三角形(或其他圖形)面積不同求法來解決線段之間的問題。
6)
遇到線段的垂直平分線,連接線段的垂直平分線上的點到線段兩端的距離相等。
7)
遇到直角三角形,作直角三角形斜邊上的中線。
8)
在有特殊角的情況下,考慮作等邊三角形
7. 初二數學怎樣熟練掌握做輔助線的方法
一,見中點引中位線,見中線延長一倍
二、在比例線段證明中,常作平行線
三、對於梯形問題,常用的添加輔助線的方法有
1、過上底的兩端點向下底作垂線
2、過上底的一個端點作一腰的平行線
3、過上底的一個端點作一對角線的平行線
4、過一腰的中點作另一腰的平行線
5、過上底一端點和一腰中點的直線與下底的延長線相交
6、作梯形的中位線
7、延長兩腰使之相交
四,三條線段關系時,把一短邊延長使其等於兩短邊之和。
8. 數學幾何輔助線方法(初二)
作輔助線的方法和技巧
題中有角平分線,可向兩邊作垂線。
線段垂直平分線,可向兩端把線連。
三角形中兩中點,連結則成中位線。
三角形中有中線,延長中線同樣長。
成比例,正相似,經常要作平行線。
圓外若有一切線,切點圓心把線連。
如果兩圓內外切,經過切點作切線。
兩圓相交於兩點,一般作它公共弦。
是直徑,成半圓,想做直角把線連。
作等角,添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線
參考資料:http://..com/question/4196979.html
9. 初中數學一般的做輔助線的方法有那些
你好..
方法有很多
因題而異
一般的話
做幾何題
要多嘗試
總會試出來的..
10. 初中數學如何做輔助線
題中有角平分線,可向兩邊作垂線。
線段垂直平分線,可向兩端把線連。
三角形中兩中點,連結則成中位線。
三角形中有中線,延長中線同樣長。
成比例,正相似,經常要作平行線。
圓外若有一切線,切點圓心把線連。
如果兩圓內外切,經過切點作切線。
兩圓相交於兩點,一般作它公共弦。
是直徑,成半圓,想做直角把線連。
作等角,添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減