A. 數學符號都表示什麼怎麼讀
運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。
「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。
「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。
「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。
性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。
省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。
排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。
例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。
離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。
如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。
↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。
wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。
|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。
∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。
A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。
s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。
更多數學表達符號:
∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。
xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。
cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。
acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。
B. 數學中全集的符號是什麼
數學中全集的符號是U。
一般的,如果一個集合含有我們所研究問題中涉及的所有元素,那麼就稱這個集合為全集,通常記作U。數學上,特別是在集合論和數學基礎的應用中,全類(若是集合,則為全集)大約是這樣一個類,它(在某種程度上)包含了所有的研究對象和集合。
(2)數學中的是什麼符號擴展閱讀
在一般數學中,可以精確定義 SN為全集;這是策梅洛集合論的模型。策梅洛集合論是由Ernst Zermelo最初在1908年提出的公理集合論。 策梅洛集合論的成功完全在於它能夠公理化"一般"數學,完成了康托爾在三十年之前開始的課題。
但策梅洛集合論對進一步發展公理集合論和數學基礎中的其他工作,特別是模型論,是不夠的。 舉一個戲劇性的例子:上述超結構的描述並不能獨立地在策梅洛集合論中完成。
最後一步,構造 S成為一個無限並集,需要代換公理;這條公理在1922年被加入策梅洛集合論,成為如今通用的策梅洛-弗蘭克爾集合論。 所以,盡管一般數學可以在 SN中進行,而對SN的討論不再"一般",屬於元數學。
C. 數學中都有哪些符號都代表什麼意思
∈是集合中的符號,表示屬於關系,A∈B,表示集合A中的元素都在集合B的裡面。tan是三角函數的符號,代表正切。
D. *在數學是什麼符號
它在數學是乘號的意思。
星形標示號*通常置於有關的詞句的左上角或右上角,作為劃分文章不同部分的符號成組使用時單獨佔一行。在電腦中,由於「×」容易和未知數x混淆,且不方便打字,所以使用*來代替乘號。
例如:3*4=12,4*(3+6)=36,而在c和c++中表示間接運算符。如:long* p,表示long類型的指針p。在c語言中,為了表示指針變數和它所指向變數之間的聯系,用「*」表示指向。
此時應當注意的是,在變數聲明中的「*」和表達式中的「*」意義是不一樣的,變數聲明中的「*」意味著定義一個存放地址的指針變數,而表達式中的「*」表示間接存取指針變數所指向變數的值。在編程序是經常用到。
(4)數學中的是什麼符號擴展閱讀:
整數的乘法:
1、從個位乘起,依次用第二個因數每位上的數去乘第一個因數;
2、用第二個因數那一位上的數去乘,得數的末位就和第二個因數的那一位對齊;
3、再把幾次乘得的數加起來。
乘法運算性質
1、幾個數的積乘一個數,可以讓積里的任意一個因數乘這個數,再和其他數相乘。
例如:(25×3 × 9)×4=25×4×3×9=2700。
2、兩個數的差與一個數相乘,可以讓被減數和減數分別與這個數相乘,再把所得的積相減。
例如: (137-125)×8=137×8-125×8=96。
E. 數學中的運算符號有哪些
1、運算符號:
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
2、數學符號大全及意義之結合符號:
如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」=。
如正號「 」,負號「-」,正負號「 」(以及與之對應使用的負正號「」)
3、數學符號大全及意義之省略符號:
如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數)
雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠)
(5)數學中的是什麼符號擴展閱讀:
+ 加號 求兩個數的和
- 減號 求兩個數的差
× 乘號 求兩個數的積
÷ 除號 求兩個數的商
^ 乘方 求一個數的幾次冪
√ 開方 求一個數的幾次方根
d 微分 求一個函數的導數(微分)
∫ 積分 求一個函數的原函數(不定積分)
F. 數學中※ 符號是什麼意思
數學符號*是乘號的意思。*還表示除0之外的數,例:N*表示正整數。
單擊「其他」按鈕打開符號面板。默認顯示的「基礎數學」符號面板。用戶可以在「基礎數學」符號面板中找到最常用的數學符號。同樣地,Alt+41420(即壓下Alt不放,依次按41420(小鍵盤),最後放開Alt 就可以打出 √。
(6)數學中的是什麼符號擴展閱讀:
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於)。
「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號。
「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
G. 數學中⊂是什麼符號
數學中⊂是集合符號包含於。
包含關系(inclusionr relotion)是概念外延間關系的一種,通常即指屬種關系。有時也僅僅作為真包含關系和真包含於關系的統稱。一說包含關系還包括溉念外延問(或類與類間)的全同關系。
在一個隨機現象中有兩個事件A與B。若事件A中任一個樣本點必在B中,則稱A被包含在B中,或B包含A,記為「A包含於B」:A⊂B或「B包含A」:B⊃A,這時事件A的發生必導致事件B發生。
(7)數學中的是什麼符號擴展閱讀:
常見的數學符號:
1、大於號
表示左邊的數量大於右邊數量的符號。記作「>」,讀作「大於」。例如9>8,表示9大於8。
2、小於號
表示左邊的數量小於右邊的數量的符號。記作「<」,讀作「小於」。例如:8<9,表示8小於9。
3、運算符號
表示屬於某一種運算的符號。例如:加號「+」,減號「一」,乘號「×」,除號「÷」。,
4、運算順序符號
表示運算順序的符號。例如:小括弧「( )」,中括弧「[ ],大括弧「{ }」。運用這些符號能改變正常的運算順序,還能表示幾個數或幾種運算結合在一起,所以也叫做結合符號。
5、元素與集合的關系
元素與集合的關系是屬於(∈)不屬於(∉)的關系。
集合與集合的關系是包含(⊂,=,⊃)不包含(⊄,⊅)。
H. 在數學中/是什麼符號
在數學中/符號有很多意思,根據不同的情境,表達的意思也是不同的,具體如下:
1、除號
例如:32/4=8 表示32除以4等於8
2、分數符號
例如:1/2 表示表示二分之一
3、或者符合
例如:a/b表示 a或者b
互聯網中的斜杠「/」:
斜杠「/」是很常見的一個符號。它的位置在右 Shift 的左邊,不用按 Shift 就能夠輸入。
斜杠之所以占據那麼重要的地位,應該得益於操作系統(Unix、Dos)的流行。在命令行中,一個斜杠往往是表示著根目錄,也作為目錄與目錄之間的分割。
其實到了互聯網時代,除了 URL 中可能要用到斜杠外,其他地方很少見到它的身影,它並沒有隨著歷史而去。在編程中,經常用到「/」和「」。
.在程序中,有時我們會看到這樣的路徑寫法,"D:\Driver\Lan" 也就是兩個反斜杠來分隔路徑。事實上,上面這個路徑可以用 "D:/Driver/Lan" 來代替,不會出錯,寫成了"D:DriverLan"就可能會出現錯誤。
I. 數學中運算符號有哪些
有以下幾種:
+(加號) 加法運算 (3+3)。
–(減號) 減法運算 (3–1) 負 (–1)。
*(星號) 乘法運算 (3*3)。
/(正斜線) 除法運算 (3/3)。
%(百分號) 求余運算10%3=1 (10/3=3·······1)。
^(乘方)乘冪運算 (3^2)。
! (階乘) 連續乘法 (3!=3*2*1=6)。
|X| x為任何數 (絕對值) 求正 (|1|)。
兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
(9)數學中的是什麼符號擴展閱讀:
加號曾經有好幾種,現代數學通用「+」號。「+」號是由拉文「et」(「和」的意思)演變而來的。
十六世紀,義大利科學家塔塔里亞用義大利文「plu」(「加」的意思)的第一個字母表示加,草為「μ」最後都變成了「+」號。「-」號是從拉丁文「minus」(「減」的意思)演變來的,一開始簡寫為m,再因快速書寫而簡化為「-」了。
到了十五世紀,德國數學家魏德美正式確定:「+」用作加號,「-」用作減號。
乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。
德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。
到了十八世紀,美國數學家歐德萊確定,把「×」作為乘號。他認為「×」是「+」的旋轉變形,是另一種表示增加的符號。
「÷」最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用「:」表示除或比,另外有人用「-」(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將「÷」作為除號。