Ⅰ 學習《數學分析課程》的心得及其領悟到的方法。
2020年春季學期微課郭雨辰數學分析(超清視頻)網路網盤
鏈接: https://pan..com/s/1FRPc9uhG8wDrSeOE2tvbjA
若資源有問題歡迎追問~
Ⅱ 對數學分析的認識和想法
1數學分析解題思想與方法
解數學題不是要把自己當成解題的機器、解題的奴隸,而應該努力成為解題的主人,是要從解題中吸取解題的方法、思想,鍛煉自己的思維,這就是所謂的「數學題要考查考生的能力」。下面小編給大家帶來了數學分析解題思想與方法,希望對您們有幫助。
一、數形結合思想
「數」與「形」結合,相互滲透,把代數式的精確刻畫與幾何圖形的直觀描述相結合,使代數問題、幾何問題相互轉化,使抽象思維和形象思維有機結合,應用數形結合思想,就是充分考查數學問題的條件和結論之間的內在聯系,既分析其代數意義又揭示其幾何意義,將數量關系和空間形式巧妙結合,來尋找解題思路,使問題得到解決,運用這一數學思想,要熟練掌握一些概念和運算的幾何意義及常見曲線的代數特徵。
二、轉化和化歸思想
在研究和解決數學問題時,綜合利用已掌握的知識和技能,通過某種手段,將問題轉化為已有知識范圍內可以解決的一種數學方法。
一般總是將復雜的問題轉化為簡單的問題,將較難的問題轉化為容易求解的問題,將未解決的問題變換並轉化為已解決的問題。可以說轉化與化歸思想在數學問題解決過程應用最為普遍,各類數學問題的解決無不是在不斷轉化中得以解決。實質上數學中常用的數形結合思想、函數與方程思想、分類討論思想也可以理解為轉化與化歸思想的表現形式。
三、向量思想
通過觀察問題的幾何特徵,挖掘代數結構的向量模型,巧妙地構造向量,把原有問題轉化為向量的運算功能或向量的幾何意義來解決,向量不僅可進行加、減、數乘等豐富的代數運算,同時向量提供了重要的幾何意義。向量構建了代數與幾何之間的橋梁,使一些難以解決的代數或幾何問題運用向量的運算使問題迎刃而解,通過向量運算,可有效揭示空間(或平面)圖形的位置和數量關系,由定性研究變為定量研究,是數形結合思想的深化和提高。
Ⅲ 怎樣理解數學分析中的微分定義
微分在數學中的定義:由函數B=f(A),得到A、B兩個數集,在A中當dx靠近自己時,函數在dx處的極限叫作函數在dx處的微分,微分的中心思想是無窮分割。微分是函數改變數的線性主要部分。微積分的基本概念之一。[
可以把他理解成「無理數」也可以把它理解成「有理數」。「無理數」是在我們不考慮他的大小的時候他的一種存在,趨近無窮小,這個時候他是一種極限。「有理數」他是「可視」的,化整為零的手段。
Ⅳ 數學分析裡面這定義如何理解
注意(A|B)是Q的一個分劃,而所謂B中存在最小數,它是在B中最小。如果任取a∈A,a<b是由分劃定義決定的。例如令A={x|x∈Q,x<3},B={x|x∈Q,x≥3},則A|B就是一個有理分劃。所謂B中存在最小數指的就是3,任取a∈A,顯然a<3.
Ⅳ 數學分析
數學分析中的題目需要推理論證的佔了絕大多數,與高等數學題目的不同也體現在這:數分題偏重論證,高數題偏重計算。
所以平時要注意培養自己推理論證的能力,當拿到數分題的時候就要先認真讀懂題目,找出已知條件,明確要證明的方向,對解題中要用到的定理和有用的結論做到心中有數,然後就開始論證。做題過程就是一個人數學思想的流露過程。
個人認為還是要多思考書中定理,例題的證明原理;課後的練習題最好自己動手做,然後對照答案找出自己證明過程中的不足加以改善;另外一些有用的結論要熟記於心。數學分析很難學,但付出總有回報,多努力了。
Ⅵ 從什麼角度思考數學分析所表達的內涵
將其看成字典。當你學了常微,偏微,實變與泛函,復變,概率論與數理統計,隨機,離散。時間序列等,你會有更深的理解。別急嘛。數分哪有一下子就明白的。
Ⅶ 數學分析要怎麼學,都學不進去。。。。
學好數學首先需要自己培養學習的興趣,當然這不是說說就行的。數學屬於說理學科,要具備良好的邏輯思維能力,對於一些基本的原理概念必須弄得一清二楚,不可有半點模糊。我教你幾招記好了:1、轉變為完成任務而做題的思想,把精力用於自主研究上,可以多看例題,遇到不懂的地方,就順藤摸瓜,挖掘出問題的根源。一遍不行兩邊兩邊不行三遍。
2、能動手的就操作一下,因為人類知識的形成直觀經驗最重要,別人說的不如自己試試印象深刻。然後做一個明了的總結。
3、對於幾何問題,重要的是關注性質定理是怎麼得來的,像上面說的該動手的最好試試,對一些關鍵詞弄懂意思。將有異同點的問題摘記在一起做好比較,找出它們的差別。
4、對代數問題,除了上面3說的外,採用數形結合的方法,目的還是為了直觀好理解。特別是函數問題,不等式,方程。
5、對於應用題還是要知道生活中存在什麼數量關系,比如什麼是工作效率,你一頓飯吃了5個包子,那麼你的每頓吃飯效率就是5個,如果你5頓吃了一個包子,那麼你的吃飯效率就是1除以5等於每頓0.2個。
6、如果方便上網,可以下載一些學習課件(教師用的)看看課件每一步的引導也能學會。
難題都是在簡單的基礎上疊加起來的,就上航天火箭身上有無數個細小的零件組成是一樣的。
Ⅷ 數學分析怎麼學
如何學好數學1
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2
高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。
至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
答一送一:
如何在學習上占第一
學習上占第一,每個同學都可以做到。之所以你占不了第一,主要有兩個原因:第一、生活方式、學習方法不正確,第二、沒有堅強的毅力。在這裡面毅力是第一重要的,學習方法是第二重要的。在現實生活中,全中國仍有70%以上的占第一的學生雖然佔了第一,但他們並不是毅力最強的,或者說學習方法生活方式不是最好的。他們也許今天是第一,明天就不是了。也就是說,你如果按占第一的方法去學習、去鍛煉,一般都會超過現有的第一。
輝煌的第一是不是要經過艱苦的努力才能得到呢?說它艱苦是因為「培養堅強的毅力」是世上最艱苦的工作,只有你具有了堅強的毅力才可能成為第一,當然正確的生活方式和學習方法也是特別重要的。在這里什麼是堅強的毅力呢,只要你能按下面幾點要求去做,而且每天都做記錄,持之以恆,每天都不間斷地堅持一個學期、一年、三年,那麼你的毅力就足以達到占第一的要求了。在這項鍛煉中就怕你中間有間斷,風雨、心情、疾病、家務等等都不是你中斷鍛煉的理由。你要記住,學好學業是你學生生活中最重要的,沒有什麼工作的重要性會超過它。除了堅強的毅力,正確的學習方法和生活方式也是很重要的。
第一人人可以占,原來占第一的同學也不一定就比你更聰明多少,腦細胞也不一定比你多。愛迪生不是說過「天才是百分之九十九的汗水加上百分之一的靈感」嗎?!所以你第一要過心理關,就是說:要堅信你一定能成功,一定會超過現有的第一,包括現在是第一的你自已。
第二、你要天天鍛煉。沒有一個健康的身體,你什麼事也做不好,即使偶爾做好了,也不能長久。每天30分鍾左右的鍛煉一定要天天堅持。鍛煉的形式多種多樣,跑步、打乒乓球、打籃球、俯卧撐、立定跳遠等等都可以。有些同學好面子,見到別人不跑步,怕自已跑別人看見了不好意思,那就錯了,真正不好意思的是辛苦了幾年考不上大學,是上了幾年大學還要下崗。如果將來自已養活不了自已,那才是真正不好意思的。
第三、學習態度要端正。每次上課前,一定要把老師准備講的內容預習好,把不好理解的、不會的內容做好標記,在老師講到該處時認真聽講。如果老師講了以後還不會,一定要再問老師,直到明白為止。當一個問題問了兩遍三遍還不會時,一般的同學就不好意思問了,千萬別這樣,老師們最喜歡「不問明白誓不罷休」的性格了。上課時要認真聽講,認真思考,做好筆記。做筆記時一定要清楚,因為筆記的價值比課本還,將來的復習主要靠它。
課下首先要做的不是做作業,而是把筆記、課本上的知識點先學好,該記的內容一定把它背熟。這樣會大大提高你做作業的速度,即平常說的「磨刀不誤砍柴功」。做作業時應該獨立思考,實在不能解決的問題,再和同學、老師商量。問同學時,不要問這道題結果是什麼,而是要問「這道題究竟怎麼做?」「這道題為什麼這樣做?」
第四、正確面對錯誤和失敗。當有的知識你沒有在課上學會、當你的練習做錯時或者在考試中成績太差時,你既不要報怨,也不要氣餒,你應該正視這自已不願得到的現實。沒有學會不要緊,把該知識寫到你的《備忘錄》中,然後問同學問老師,再把正確的解釋或結果,寫到其它頁上。錯了題也是這樣,考試失利不就是錯的題多點嗎,正確的方法是把原題抄到《備忘錄》中,把正確的做法學會後,把做法和結果寫到其它頁上,如果能註上做該類題的注意事項,就會把你的學習效率又提高30%-60%。之所以把答案或解釋寫到其它頁上,就是為了下次看知識點或錯誤的題目時,再動動腦筋,想想該知識點的理解和解釋情況,再練練該題的做法和答案。錯誤和失敗並不可怕,只要你能正視它,一切都會成為你成功的動力。
第五、記帳。你的學習一定要有一本帳,你什麼時候做得好,記下來,什麼時候錯了題,記下來(註:帳本上只記「今天錯題為《備忘錄》××頁×題)。課下幾點幾分學了英語,記錄好;幾點幾分至幾點幾分學了物理記下來。把你生活中鍛煉、學習的分分秒秒記錄在你的帳本上,把你每次作業和考試中的正確題數、錯誤題數和錯誤題號(《備忘錄》上的頁號題號)一一記錄在你的帳本上。把你每天學會的知識點都記錄在帳本上,以備明天、後天再檢查一下自已是否真正掌握了這些知識點。在帳本上過去了幾天的知識點,你一定要學會並能熟練掌握。
帳本記錄的是你學習、鍛煉中每一個細節。這樣記下來,在校生活中,每天約有一頁32開紙的記錄量,不在校時可能有兩頁32紙的記錄量。在星期和假期里千萬不能間斷。把你的帳一天天積累起來,這就是你所走過的第一之路。
雖說在素質教育的今天學校不排名次,但學習出類拔萃是我們努力的目標,是我們考上高一級學校的必要條件,也是我們走向社會後,做好每一件工作的資本。同學們,去爭取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都這樣去做,即使你占不了第一,一定是中國出類拔萃的學生,因為中國大多數的同學沒有這樣的毅力,沒有這樣好的學習方法和生活方式。同學們,為美好的明天奮斗吧!
===============================================
首先要有學習數學的興趣。兩千多年前的孔子就說過:「知之者不如好之者,好之者不如樂之者。」這里的「好」與「樂」就是願意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:「在學校里和生活中,工作的最重要動機是工作中的樂趣。」學習的樂趣是學習的主動性和積極性,我們經常看到一些同學,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想像,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇後,它是學習科學知識和應用科學知識必 的工具。可以說,沒有數學,也就不可能學好其他學科;其次必須有鑽研的精神,有非學好不可的韌勁,在深入鑽研的過程中,就可以 略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,並激發出學好數學的高度自覺性和積極性。
有了學習數學的興趣和積極性,要學好數學,還要注意學習方法並養成良好的學習習慣。
知識是能力的基礎,要切實抓好基礎知識的學習。數學基礎知識學習包括概念學習,定理公式學習以及解題學習三個方面。學習數學概念,要善於抓住它的本質屬性,也就是區別於這個概念和其他概念的屬性;學習定理公式,要緊緊抓住定理方向的內在聯系,抓住定理公式適用的范圍及題型,做到得心應手地應用這些定理公式,數學解題實№上是在熟練掌握概念與定理公式的基礎上解決矛盾,完成從「未知」向「已知」的轉化。要著重學習各種轉化方式,培養轉化的能力。總而言之,在學習數學基礎知識中,要注意把握知識的整體精髓, 悟其中的規律和實質,形成一個緊密聯系的整體認識體系,以促進各種形式間的相互遷移和轉化。同時,還要注意知識形成過程無處不隱含著人們在教學活動中解決問題的途徑、手段和策略,無處不以數學思想、方法為指南,而這也是我們學習知識時最希望要學到的東西。
數學思想方法是知識、技能轉化為能力的橋粱,是數學結構中強有力的支柱,在中學數學課本里滲透了函數的思想,方程的思想,數形結合的思想,邏輯劃分的思想,等價轉化的思想,類比歸納的思想,介紹了配方法、消元法、換元法、待定系數法、反證法、數學歸納法等,在學好數學知識的同時,要下大力氣理解這些思想和方法的原理和依據,並通過大量的練習,掌握運用這些思想和方法解決數學問題的步驟和技巧。
在數學學習中,要特別重視運用數學知識解決實№問題能力的培養。數學社會化的趨勢,使得「大眾數學」的口號席捲整個世界,有人認為未來的工作崗位是為已作好數學准備的人才提供的,這里所說的「已作好了數學准備」並不僅指懂得了數學理論,更重要的是學會了數學思想,學會了將數學知識靈活運用於解決現實問題中。培養數學應用能力,首先要養成將實№問題數學化的習慣;其次,要掌握將實№問題數學化的一般方法,即建立數學模型的方法,同時,還要加強數學與其他學科的聯系,除與傳統學科如物理、化學聯系外,可適當了解數學在經濟學、管理學、工業等方面的應用。
如果我們在數學學習中,既扎扎實實地學好了數學知識和技能,又牢固地掌握了數學思想和方法,而且能靈活應用數學知識和技能解決實№問題,那麼,我們就走在了一條數學學習成功的大道上。