Ⅰ 高中數學怎麼學好基礎
數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:
一是知識的形成過程和表述;
二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。保證數量就是
①選准一本與教材同步的輔導書或練習冊。
②做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理。
先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。④每天保證1小時左右的練習時間。
Ⅱ 怎樣才能快速的掌握數學知識
數學學習方法
這里我們講一下數學學習的方法。這是我們應用國外的快速學習方法,根據數學學科特點提出來的。由於代數學習法和幾何學習法的不同,我們分別進行討論。
一、代數學習法。
抄標題,瀏覽定目標。
閱讀並記錄重點內容。
試作例題。
快做練習,歸納題型。
回憶小結
二、幾何學習四大步。
1.①書寫標題,瀏覽教材
②自我講授,寫出目錄
2.①按目錄,讀教材
②自我講授幾何概念及定理
3.①閱讀例題,形成思路
②寫出解答例題過程
4.①快做練習。
②小結解題方法。
三.數學概念學習方法。
數學中有許多概念,如何讓學生正確地掌握概念,應該指明學習概念需要怎樣的一個過程,應達到什麼程度。數學概念是反映數學對象本質屬性的思維形式,它的定義方式有描述性的,指明外種延的,有種概念加類差等方式。一個數學概念需要記住名稱,敘述出本質屬性,體會出所涉及的范圍,並應用概念准確進行判斷。這些問題老師沒有要求,不給出學習方法,學生將很難有規律地進行學習。
下面我們歸納出數學概念的學習方法:
閱讀概念,記住名稱或符號。
背誦定義,掌握特性。
舉出正反實例,體會概念反映的范圍。
進行練習,准確地判斷。
四、學公式的學習方法
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數。有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里。教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式。
我們介紹的數學公式的學習方法是:
書寫公式,記住公式中字母間的關系。
懂得公式的來龍去脈,掌握推導過程。
用數字驗算公式,在公式具體化過程中體會公式中反映的規律。
將公式進行各種變換,了解其不同的變化形式。
將公式中的字母想像成抽象的框架,達到自如地應用公式。
五、數學定理的學習方法。
一個定理包含條件和結論兩部分,定理必須進行證明,證明過程是連接條件和結論的橋梁,而學習定理是為了更好地應用它解決各種問題。
下面我們歸納出數學定理的學習方法:
背誦定理。
分清定理的條件和結論。
理解定理的證明過程。
應用定理證明有關問題。
體會定理與有關定理和概念的內在關系。
有的定理包含公式,如韋達定理、勾股定理、正弦定理,它們的學習還應該同數公式的學習方法結合起來進行。
六、初學幾何證明的學習方法。
在初一第二學期,初二、高一立體幾何學習的開始,學生總感到難以入門,以下的方法是許多老教師十分認同的,無論是上課還是自學,均可以開展。
看題畫圖。(看,寫)
審題找思路(聽老師講解)
閱讀書中證明過程。
回憶並書寫證明過程。
七 .提高幾何證明能力的化歸法。
在掌握了幾何證明的基本知識和方法以後,在能夠較順利和准確地表述證明過程的基礎上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧。這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達到上述目的。
化歸法是將未知化歸為已知的方法,當我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關鍵步驟,將它化歸為已知題型時就可結束。此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細的表述過程。
提高幾何證明能力的化歸法:
1.審題,弄清已知條件和求證結論。
2.畫圖,作輔助線,尋找證題途徑。
3.記錄證題途徑的各個關鍵步驟。
4.總結證明思路,使證題過程在大腦中形成清淅的印象。
八、波利亞解題思考方法。
預見法
收集資料,進行組織。
辨認與回憶,充實與重新安排。
分離與組合。
回顧
解答問題法。
弄清問題。
擬定問題。
實現計劃。
回顧。
解題過程自問法.
我選擇的是怎樣的一條解題途徑。
我為什麼作出這樣的選擇?
我現在已進行到了哪一階段?
這一步的實施在整個解題過程中具有怎樣的地位?
我目前所面臨的主要困難是什麼?
解題的前景如何?
九 、數學學習的基本思維方法。
1. 觀察與實驗
2.分析與綜合
3.抽象與概括
4.比較與分類
5.一般化與特殊化
6.類比聯想與歸納猜想
十、理解、鞏固、應用、系統化四步學習法
1.理 解:內容,標志,階段,過程。
2.鞏 固:透徹理解,牢固記憶,多方聯想,合理復習。
3.應 用:理論,實踐,具體,綜合。
4.系統化: ①明確系統內部各要素的屬性。
②使各要素之間形成多方的聯系。
③概括各要素的各種屬性,形成整體性。
④同化於原知識系統之中。
十一、高效學習方法在數學學習中的應用
超級學習方法
Ⅲ 如何培養學生學好數學的基礎知識和基本技能
要重視學習過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點。
發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:mathematics或maths),其英語源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。
Ⅳ 如何快速掌握數學的知識
數學的基礎知識,讓你的知識有自我修復的能力。掌握基礎知識,把知識相互之間建立聯系。數學的基礎知識分成兩類:一類是要求強行記憶,沒有必要了解這個知識是怎麼推導來的,只需要熟記於心就可以了,例如:正弦定理,餘弦定理,這類的數學知識在中學階段非常少。一類是要求在理解中記憶,甚至理解的成分要高於記憶的成分。知識點與知識點之間是相互依存的關系而存在的,遺忘了任何一個知識點,可以通過知識網路中其他的知識點推導出來。在平時的學習過程中,要不斷的思考這樣的問題:這個知識點我忘記了,通過什麼樣的方式可以再想起來,通過什麼樣的方式可以推導出來,這個知識點和上節課學的知識點有什麼樣的聯系,日積月累下來之後,所學的知識相互之間會在邏輯上相互支撐,即使忘記一小部分,可以通過周圍的知識再回憶出來,讓自己所學的知識有自我修復的能力。我有近十年的時間沒有學習物理和化學,如果有學生問物理化學等學科的問題,即使一時間難以想起來怎麼解答,把學生的教科書拿來看一下附近的知識點,或者讓學生解釋下題目中出現相關的知識點,我就可以根據得到的僅有的知識點推導出成片的知識點,這樣題目就很容易的解答出來。數學語言的基本特徵是准確、精煉、嚴密。特別是字母表示數的應用和數學符號的變化,是數學語言本質區別於生活用語,具有更加簡明化、抽象化的特徵。例如圓的定義:到定點的距離等於定長的點的集合。不是所有的數學知識都是可以用自己的語言來進行描述,要記憶並理解教科書中的相關定義、概念、公式,在背誦和記憶的時候,一個字都不能差,這是數學知識的嚴謹性。數學的教科書,在於幫助我們建立數學的基礎知識網路和簡單的知識運用,讓知識形成網路之後,能幫助你以一個全局的觀念來看待每一個單元的每一個知識點。所以,在數學課堂中把應該記住的要點記住之後,下了數學課之後,課本再也沒有用處。只有脫離了課本,脫離了基礎知識的記憶,才能開始培養數學的解題能力。
Ⅳ 如何學好數學知識
要想學好數學知識其實很簡單,上課認真聽老師講課,做好筆記,有不懂得一定要問。下課認真復習。還有就是QQ空間應用的9A數學王國里有上萬道題目供孩子練習,你可以去看看。希望恩能夠幫到你!
Ⅵ 數學應該怎麼學
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
Ⅶ 怎麼才能更好的學習數學
數學的學習本身就是在舊知識的鋪墊下,不斷的延伸拔高難度,所以從小學簡單的加減運算過後,需要的不是簡單的運算能力,而是對一個知識點的理解後,加以運用的能力。數學學習的就是兩個問題,那就是要搞懂2點:這個知識點的本質是什麼,而解這道題為什麼要這么做。搞明白這兩點不僅需要老師單方面的灌輸,要想搞懂一個知識點為什麼,很多學生學習數學的方式是機械性質的,雖然具有一定的夯實基礎的作用,但是這樣的抄寫復制方法,卻不是高效率學習數學的方式。學會自己去學習,是學好數學至關重要的一點。平時在學習的過程中,除了要重視老師強調的知識點外,學會自己去分析、歸納易錯點,然後將這類知識點以及相關題目進行集中復習、鞏固,也是減少知識短板的方法之一。能夠主動的去分析思考題目本身就是對知識點的深加工,所以學會自己去分析、歸納易錯點,是學好數學的關鍵一步,錯題整理完後,先將錯題進行篩選,哪部分是需要復習,哪部分是不需要復習的區分好,然後再是將錯題進行分類整理,將同一類型的題目集中在一起,這樣復習的效果也會更好;最後是將錯題進行分層,哪部分是需要多次復習的進行標注,這樣一來,學習數學就會更加清晰,學習的效果也會更好。