導航:首頁 > 數字科學 > 什麼樣的問題使用數學建模

什麼樣的問題使用數學建模

發布時間:2022-06-30 02:31:15

1. 數學建模具體有些什麼內容如何進行

一、定義
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
二、數學建模的幾個過程
模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。
模型求解:利用獲取的數據資料,對模型的所有參數做出計算(估計)。
模型分析:對所得的結果進行數學上的分析。
模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用:應用方式因問題的性質和建模的目的而異。

2. 數學建模的應用范圍有多大

例如給你一些數據讓你分析一個城市的經濟發展水平,或者給出數據讓你選擇有價證券,亦或分析壟斷行業的價格與服務。需要用到數據統計模型和優化模型。不會涉及很深的專業知識,也不必刻意去了解多少經濟方面的知識,要知道中國數學建模大賽是全國各高校各專業學生皆可參加的競賽。你只要了解並且能夠熟練運用數學建模的幾種基本模型就可以(建模時也就用這幾種模型,就算過多的運用專業知識也未必得高分,因為這個競賽比的是把實際問題抽象成數學問題的能力,而非專業技巧)。
這幾種基本模型有:優化模型、微分方程模型、統計模型、概率模型、圖論模型、決策模型。
在這幾種模型中貫穿著以下幾種演算法(下面我就復制粘貼了):
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算
法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)

2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要
處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)

3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題
屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、
Lingo軟體實現)

4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉
及到圖論的問題可以用這些方法解決,需要認真准備)

5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計
中比較常用的方法,很多場合可以用到競賽中)

6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是
用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實
現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽
題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好
使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只
認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非
常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常
用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調
用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該
要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab
進行處理)

我今年9月份要參加數學建模,希望和你相互交流,共同進步!

3. 數學建模建模分為幾種類型,分別用什麼法求解

數學建模應當掌握的十類演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算
法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要
處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題
屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、
Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉
及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計
中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是
用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實
現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽
題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好
使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只
認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非
常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常
用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調
用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該
要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab
進行處理)

4. 如何用「數學建模解決實際生活中的問題

首先呢,是將現實問題簡單化,具體化,這個過程就需要運用問題假設了.問題簡單化後呢,就是運用數學方法建立模型了,這個模型可以是一個數學公式,數學符號,也可以是個圖,一個表,然後就是運用軟體,matlab或者lingo等等,來進行模型的求解,將問題解決了,那麼就可以返回到現實中去,提供一些建議或者想法,供現實參考,這就是整個過程了.其實,國內的幾個數學建模競賽其在現實中的應用沒有國際賽的那麼緊密,你以後會體會到的.

5. 什麼樣的實際問題不能用數學建模解決

數學建模:就是通過計算得到的結果來解釋實際問題,並接受實際的檢驗,來建立數學模型的全過程。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學模型(Mathematical Model)是一種模擬,是用數學符號,數學式子,程序,圖形等對實際課題本質屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(MathematicalModeling)。
不論是用數學方法在科技和生產領域解決哪類實際問題,還是與其它學科相結合形成交叉學科,首要的和關鍵的一步是建立研究對象的數學模型,並加以計算求解(通常藉助計算機);數學建模和計算機技術在知識經濟時代的作用可謂是如虎添翼

6. 選擇三種數學建模方法,介紹其內容並說明其適用的問題類型,並舉例

摘要 對於大家來說,建模是大家覺得比較難的內容。那麼如何進行有效的建模呢?今天,滬江小編就為大家分享幾種常用的數學建模方法,一起來看看吧!

7. 數學建模是什麼,他有什麼用

數學建模是數學分支,作用是根據結果去解決實際問題。

數學建模,就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

應用:

自從20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在21世紀這個知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國家經濟和科技的後備走到了前沿。

經濟發展的全球化、計算機的迅猛發展、數學理論與方法的不斷擴充,使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。

8. 什麼是數學建模 應用在哪個具體領域 簡略通俗

數學建模就是用數學語言描述實際現象的過程.這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向.這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容.
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程.
數學模型一般是實際事物的一種數學簡化.它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別.要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等.為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學.使用數學語言描述的事物就稱為數學模型.有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代.
數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的.數學的特點不僅在於概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在於它應用的廣泛性,進入20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在即將進入21世紀的知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國或經濟和科技的後備走到了前沿.經濟發展的全球化、計算機的迅猛發展,數學理倫與方法的不斷擴充使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術.培養學生應用數學的意識和能力已經成為數學教學的一個重要方面.
應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步.建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程.要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分折和解決問題.這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面.數學建模是聯系數學與實際問題的橋梁,是數學在各個領械廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之.為了適應科學技術發展的需要和培養高質量、高層次科技人才,數學建模已經在大學教育中逐步開展,國內外越來越多的大學正在進行數學建模課程的教學和參加開放性的數學建模競賽,將數學建模教學和競賽作為高等院校的教學改革和培養高層次的科技人才的個重要方面,現在許多院校正在將數學建模與教學改革相結合,努力探索更有效的數學建模教學法和培養面向21世紀的人才的新思路,與我國高校的其它數學類課程相比,數學建模具有難度大、涉及面廣、形式靈活,對教師和學生要求高等特點,數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程.為了改變過去以教師為中心、以課堂講授為主、以知識傳授為主的傳統教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作.通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力,使他們在以後的工作中能經常性地想到用數學去解決問題,提高他們盡量利用計算機軟體及當代高新科技成果的意識,能將數學、計算機有機地結合起來去解決實際問題.數學建模以學生為主,教師利用一些事先設計好問題啟發,引導學生主動查閱文獻資料和學習新知識,鼓勵學生 積極開展討論和辯論,培養學生主動探索,努力進取的學風,培養學生從事科研工作的初步能力,培養學生團結協作的精神、形成一個生動活潑的環境和氣氛,教學過程的重點是創造一個環境去誘導學生的學習慾望、培養他們的自學能力,增強他們的數學素質和創新能力,提高他們的數舉素質,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果.接受參加數學建模競賽賽前培訓的同學大都需要學習諸如數理統計、最優化、圖論、微分方程、計算方法、神經網路、層次分析法、模糊數學,數學軟體包的使用等等「短課程」(或講座),用的學時不多,多數是啟發性的講一些基本的概念和方法,主要是靠同學們自己去學,充分調動同學們的積極性,充分發揮同學們的潛能.培訓中廣泛地採用的討論班方式,同學自己報告、討論、辯論,教師主要起質疑、答疑、輔導的作用,競賽中一定要使用計算機及相應的軟體,如Mathemathmatica,Matlab,Mapple,甚至排版軟體等.

9. 什麼是數學建模

數學建模
數學建模是利用數學方法解決實際問題的一種實踐。即通過抽象、簡化、假設、引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解。

數學建模將各種知識綜合應用於解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。
數學建模是使用數學模型解決實際問題。
數學模型
數學模型是對於現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構。

簡單地說:就是系統的某種特徵的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數、圖形、代數方程、微分方程、積分方程、差分方程等)來描述(表述、模擬)所研究的客觀對象或系統在某一方面的存在規律。

10. 什麼叫做數學建模

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言,把它表述為數學式子,也就是數學模型,然後用通過計算得到的模型結果來解釋實際問題,並接受實際的檢驗。這個建立數學模型的全過程就稱為數學建模。
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。 數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包含抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。 我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。 數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
數學建模掌握的十類演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算 法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法) 2.數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要 處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具) 3.線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題 屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現) 4.圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉 及到圖論的問題可以用這些方法解決,需要認真准備) 5.動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計 中比較常用的方法,很多場合可以用到競賽中) 6.最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是 用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實 現比較困難,需慎重使用) 7.網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽 題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好 使用一些高級語言作為編程工具) 8.一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只 認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非 常重要的) 9.數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常 用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調 用) 10.圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該 要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)

閱讀全文

與什麼樣的問題使用數學建模相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1421
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1002
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071