① 初中數學模型有哪些
新課標
初中數學建模的常見類型
全日制義務教育數學課程標准對數學建模提出了明確要求,標准強調「從學生以有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解析與應用的過程,進而使學生獲得對數學理解的同時,在思維能力。情感態度與價值觀等方面得到進步和發展。」強化數學建模的能力,不僅能使學生更好地掌握數學基礎知識,學會數學的基本思想和方法。也能增強學生應用數學的意識,提高分析問題,解決實際問題的能力。2007年全國各地的中考試題考查學生建模思想和意識的題目有許多,現分類舉例說明。
一、建立「方程(組)」模型
現實生活中廣泛存在著數量之間的相等關系,「方程(組)」模型是研究現實世界數量關系的最基本的數學模型,它可以幫助人們從數量關系的角度更正確、清晰的認識、描述和把握現實世界。諸如納稅問題、分期付款、打折銷售、增長率、儲蓄利息、工程問題、行程問題、濃度配比等問題,常可以抽象成「方程(組)」模型,通過列方程(組)加以解決
例1(2007年深圳市中考試題)A、B兩地相距18公里,甲工程隊要在A、B兩地間鋪設一條輸送天然氣管道,乙工程隊要在A、B兩地間鋪設一條輸油管道。已知甲工程隊每周比乙工程隊少鋪設1公里,甲工程對提前3周開工,結果兩隊同時完成任務,求甲、乙兩工程隊每周各鋪設多少公里管道?
解:設甲工程隊每周鋪設管道x公里,則乙工程隊每周鋪設管道(x+1)公里。
依題意得:
解得x1=2, x2=-3
經檢驗x1=2,x2=-3都是原方程的根。
但x2=-3不符合題意,捨去。
∴x+1=3
答:甲工程隊每周鋪設管道2公里,則乙工程隊每周鋪設管道3公里。
二、建立「不等式(組)」模型
現實生活建立中同樣也廣泛存在著數量之間的不等關系。諸如統籌安排、市場營銷、生產決策、核定價格範圍等問題,可以通過給出的一些數據進行分析,將實際問題轉化成相應的不等式問題,利用不等式的有關性質加以解決。
例2 (2007年茂名市中考試題)某體育用品商場采購員要到廠家批發購進籃球和排球共100隻,付款總額不得超過11815元。已知兩種球廠家的批發價和商場的零售價如下表,試解答下列問題:
品名 廠家批發價(元/只) 商場零價(元/只)
籃球 130 160
排球 100 120
(1)該采購員最多可購進籃球多少只?
(2)若該商場能把這100隻球全部以零售價售出,為使商場獲得的利潤不低於2580元,則采購員至少要購籃球多少只?該商場最多可盈利多少元?
解:(1)該采購員最多可購進籃球x只,則排球為(100-x)只,
依題意得:130x+100(100-x)≤11815
解得x≤60.5
∵x是正整數,∴x=60
答:購進籃球和排球共100隻時,該采購員最多可購進籃球60隻。
(2)該采購員至少要購進籃球x只,則排球為(100-x)只,
依題意得:30x+20(100-x)≥2580
解得x≥58
由表中可知籃球的利潤大於排球的利潤,因此這100隻球中,當籃球最多時,商場可盈利最多,即籃球60隻,此時排球平均每天銷售40隻,
商場可盈利(160-130)×60+(120-100)×40=1800+800=2600(元)
答:采購員至少要購進籃球58隻,該商場最多可盈利2600元。
三、建立「函數」模型
函數反映了事物間的廣泛聯系,揭示了現實世界眾多的數量關系及運動規律。現實生活中,諸如最大獲利、用料價造、最佳投資、最小成本、方案最優化問題,常可建立函數模型求解。
例3 (2007年貴州貴陽市中考試題)某水果批發商銷售每箱進價為40元的蘋果,物價部門規定每箱售價不得高於55元,市場調查發現,若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱。
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數關系式。
(2)求該批發商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數關系式。
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
解:(1)y=90-3(x-50) 化簡,得y=-3x+240
(2)w=(x-40)(-3x+240)
=-3x2+360x-9600
(3)w=-3x2+360x-9600
= -3(x-60)2+1125
∵a=-3<0∴拋物線開口向下
當x=60時,w有最大值,又x<60,w隨x的增大而增大,
∴當x=55時,w的最大值為1125元,
∴當每箱蘋果的銷售價為55元時,可以獲得最大利潤1125元的最大利潤
四、建立「幾何」模型
幾何與人類生活和實際密切相關,諸如測量、航海、建築、工程定位、道路拱橋設計等涉及一定圖形的性質時,常需建立「幾何模型,把實際問題轉化為幾何問題加以解決
例4 (2007年廣西壯族自治區南寧市中考試題)如圖點P表示廣場上的一盞照明燈。
(1)請你在圖中畫出小敏在照明燈P照射下的影子(用線段表示);
(2)若小麗到燈柱MO的距離為1.5米,小麗目測照明燈P的仰角為55°,她的目高QB為1.6米,試求照明燈P到地面的距離;結果精確到0.1米;參考數據:tan55 °≈1.428,sin55°≈0.819,cos55°≈0.574。
解:(1)如圖,線段AC是小敏的影子。
(2)過點Q作QE⊥MO於E,過點P作PF⊥AB於F,交EQ於點D,則PF⊥EQ。在Rt△PDQ中,∠PQD=55°,DQ=EQ-ED=4.5-1.5=3(米)。
∵tan55°=
∴PD=3 tan55°≈4.3(米)
∵DF=QB=1.6米
∴PF=PD+DF=4.3+1.6=5.9(米)。
答:照明燈到地面的距離為5.9米。
五、建立「統計」模型
統計知識在自然科學、經濟、人文、管理、工程技術等眾多領域有著越來越多的應用。諸如公司招聘、人口統計、各類投標選舉等問題,常要將實際問題轉化為「統計」模型,利用有關統計知識加以解決。
例5 (2007年後湖北省荊州市中考試題)為了了解全市今年8萬名初中畢業生的體育升學考試成績狀況(滿分為30分,得分均是整數),從中隨機抽取了部分學生的體育生學考試成績製成下面頻數分布直方圖(尚不完整),已知第一小組的頻率為0.12。回答下列問題:
(1)在這個問題中,總體是 ,樣本容量為
。
(2)第四小組的頻率為 ,請補全頻數分布直方圖。
(3)被抽取的樣本的中位數落在第 小組內。
(4)若成績在24分以上的為「優秀」,請估計今年全市初中畢業生的體育升學考試成績為「優秀」的人數。
解:(1)8萬名初中畢業生的體育升學考試 成績, =500。
(2)0.26,補圖如圖所示。
(3)三.
(4)由樣本知優秀率為 100%=28%
∴估計8萬名初中畢業生的體育升學成績優秀的人數為28%×80000=22400(人)。
六、建立「概率」模型
概率在社會生活及科學領域中用途非常廣泛,諸如游戲公平問題、彩票中獎問題、預測球隊勝負等問題,常可建立概率模型求解。
例6 (2007年遼寧省中考試題)四張質地相同的卡片如圖所示。將卡片洗勻後,背面朝上放置在桌面上。
② 初中數學思想方法主要有哪些
『2.
分類討論思想
所謂分類討論是指對於復雜的對象,為了研究的需要.根據對象
本質屬性
的相同點和差異性,將對象區分為不同種類,通過研究各類對象的性質,從而認識整體的性質的
思想方式
。在分類討論中要注意標準的同一性.即劃分始終是同一個標准、這個標准必須是科學合理的;分域的
互斥
性.即所分成的各類既要互不包含.義要使各類總和等於討論的全集;分域的逐級性,有的問題分類後還可在每,類中丙繼續分類。運用分類討論思想指導
數學教學
,有利於學生歸納、總結所學的數學知識,使之系統化、條理化.並逐步形成一個完整的知識結構網路,這有利於學生嚴密、清晰、合理地探索解題思路,提高
數學思維
能力。在
初中數學
中需要分類討淪的問題主要表現個方而:(扮有的
數學概念
、定理的論證包含多種情況.這類問題需要分類討論。如平面兒
何中
二角形的分類、四邊形的分類、角的分類、
圓周角定理
、
圓冪定理
、
弦切角定理
等的證明,都涉及到分類i寸論(約解含字毋參數或
絕對值符號
的為一程、不等式、討論
算術根
、
正比例和反比例
的數中
二次項系數
、,與圖象的開l:]方向等,由於這些參數的取位不同或要去掉絕對值符號就有不同的結果.這類問題需要分類討論(3)有的數學問題.雖結論惟一但導致這結論的前提不盡相同.這類問題也要分類討論3一效形結合思想所謂
數形結合
是指抽象的
數學語言
與形象直觀的圖形結合起來.從而實現由抽象向具體轉化的一種思維方式。著名數學家
華羅庚
說過:數缺形時不直觀,形少數時難人微有些數最關系.藉助於圖形的性質,可以使許多抽象的概念和復雜的關系直觀化、形象化、簡單化,而圖形的一些性質.藉助於數量的計算和分析.得以嚴謹化。在初中階段,數形結合的形可以是
數軸
、函數的圖象和
幾何圖形
等等.它們都具有形象化的特點數形結合思想在初中數學中主要表現在以下兩個方面;(l)以形助數,幫助學生深刻
理解數學
概念如教師可以用數軸上點和實數之間的對應
關系來
講清
相反數
、絕對值的概念以及比較兩個數大小的方法;運用
函數圖象
的性質討淪
一元三次方程
的根以及討論一7
乙一
次小等式等等(2)以數助形,幫助學生簡化解題方法。初中數學中還滲透了類比、歸納、聯想等
數學思想方法
這些
思想力
一法之間,是相互滲透、互相促進的,在數學教學中要有機地結合起來
③ 初中數學有哪些模型
三角形,矩形,平行四邊形!如果您認為這個回答對你有幫助, 請點擊回答內容右下方的「…」,再點擊「採納」。多謝了!
④ 初中數學思想方法有哪些
『2.分類討論思想所謂分類討論是指對於復雜的對象,為了研究的需要.根據對象本質屬性的相同點和差異性,將對象區分為不同種類,通過研究各類對象的性質,從而認識整體的性質的思想方式。在分類討論中要注意標準的同一性.即劃分始終是同一個標准、這個標准必須是科學合理的;分域的互斥性.即所分成的各類既要互不包含.義要使各類總和等於討論的全集;分域的逐級性,有的問題分類後還可在每,類中丙繼續分類。運用分類討論思想指導數學教學,有利於學生歸納、總結所學的數學知識,使之系統化、條理化.並逐步形成一個完整的知識結構網路,這有利於學生嚴密、清晰、合理地探索解題思路,提高數學思維能力。在初中數學中需要分類討淪的問題主要表現個方而:(扮有的數學概念、定理的論證包含多種情況.這類問題需要分類討論。如平面兒何中二角形的分類、四邊形的分類、角的分類、圓周角定理、圓冪定理、弦切角定理等的證明,都涉及到分類i寸論(約解含字毋參數或絕對值符號的為一程、不等式、討論算術根、正比例和反比例的數中二次項系數、,與圖象的開l:]方向等,由於這些參數的取位不同或要去掉絕對值符號就有不同的結果.這類問題需要分類討論(3)有的數學問題.雖結論惟一但導致這結論的前提不盡相同.這類問題也要分類討論3一效形結合思想所謂數形結合是指抽象的數學語言與形象直觀的圖形結合起來.從而實現由抽象向具體轉化的一種思維方式。著名數學家華羅庚說過:數缺形時不直觀,形少數時難人微有些數最關系.藉助於圖形的性質,可以使許多抽象的概念和復雜的關系直觀化、形象化、簡單化,而圖形的一些性質.藉助於數量的計算和分析.得以嚴謹化。在初中階段,數形結合的形可以是數軸、函數的圖象和幾何圖形等等.它們都具有形象化的特點數形結合思想在初中數學中主要表現在以下兩個方面;(l)以形助數,幫助學生深刻理解數學概念如教師可以用數軸上點和實數之間的對應關系來講清相反數、絕對值的概念以及比較兩個數大小的方法;運用函數圖象的性質討淪一元三次方程的根以及討論一7乙一次小等式等等(2)以數助形,幫助學生簡化解題方法。初中數學中還滲透了類比、歸納、聯想等數學思想方法這些思想力一法之間,是相互滲透、互相促進的,在數學教學中要有機地結合起來
⑤ 初中數學思想有什麼
大概有:方程、函數、分類、整體代入、化規、數形結合、統計、建立數學模型等思想。
⑥ 初中的數學建模思想
數學建模屬於一門應用數學,學習這門課要求我們學會如何將實際問題經過分析、簡化轉化為一個數學問題,然後用適當的數學方法去解決。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。
數學建模的過程
1)模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。(2) 模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。(3) 模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具)(4) 模型求解:利用獲取的數據資料,對模型的所有參數做出計算(估計)。(5) 模型分析:對所得的結果進行數學上的分析。(6) 模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。(7) 模型應用:應用方式因問題的性質和建模的目的而異。
數學建模的意義是:
1、培養創新意識和創造能力
2、訓練快速獲取信息和資料的能力
3、鍛煉快速了解和掌握新知識的技能
4、培養團隊合作意識和團隊合作精神
5、增強寫作技能和排版技術
6、榮獲國家級獎勵有利於保送研究生
7、榮獲國際級獎勵有利於申請出國留學
⑦ 初中數學教學中如何培養學生的建模思想
所謂數學模型,就是根據特定的研究目的,採用形式化的數學語言,去抽象地概括地表徵所研究對象的主要特徵及其關系所形成的一種數學結構。在初中數學中,用字母、數字及其他數學符號建立起來的代數式、關系式、方程、函數、不等式,及各種圖表、圖形等都是數學模型。數學模型結構有兩個主要特點:其一,它是經過抽象出對象的一些非本質屬性以後所形成的一種純數學關系結構。其二,這種結構是藉助數學符號來表示,並能進行數學推演的結構。數學模型思想作為建立數學與外部世界的聯系,是學生必須要掌握的基本數學思想之一。1.教學中逐步滲透和建立數學模型思想 學生對模型思想的感悟需要經歷一個長期的過程,在這一過程中,學生總是從相對簡單到相對復雜,從相對具體到相對抽象,逐步積累經驗,掌握建模方法,逐步形成運用模型去進行數學思維的習慣。初中數學模型教學主要是結合相關概念學習,引導學生運用函數、不等式、方程、方程組、幾何圖形、統計表格等分析表達現實問題。模型思想的感悟應該蘊涵於概念、命題、公式、法則的教學之中,並與數感、符號感、空間觀念等培養緊密結合。模型思想的建立是一個循序漸進的過程。 例如,函數思想是一種考慮對應、考慮運動變化、相依關系,以一種狀態確定地刻畫另一種狀態,由研究狀態過渡到研究變化過程的思想方法,函數思想的本質在於建立和研究變數之間的對應關系。其中變化的是『過程』,不變的是『規律』(關系)。教學中要引導學生去發現規律,並能將規律表述出來,這就是函數思想在教學中的滲透。例如:「體積的問題」,一塊長30cm、寬25cm的長方形鐵皮,從四個角各切掉一個邊長是5cm的正方形,然後做成盒子。這個盒子用了多少鐵皮,它的容積是多少?」這個問題就只是一道簡單的計算題,但是如果將原題中的規定「切掉邊長是5cm的正方形」改為猜想並驗證「切掉邊長是多少厘米的正方形時,鐵盒的容積最大」問題就由靜止變得動態起來。藉助這樣運動、變化的過程,對學生進行函數思想的初步滲透。2.經歷「問題情境——建立模型——求解驗證」的數學活動過程 「問題情境——建立模型——求解驗證」的數學活動過程體現了模型思想的基本要求,也有利於學生在活動過程中理解,掌握有關知識,技能,積累數學活動經驗,感悟模型思想的本質。這一過程更有利於學生主動去發現、提出、分析和解決問題,培養創新意識。比如,關於方程的教學,過去我們是從概念到概念,強調的是方程定義、類型解法、同解性討論等比較「純粹」的知識、技能,而現在,我們可以讓學生從豐富的現實具體問題中,抽象出「方程」這個模型,從而求解具體問題。 數學模型不僅為數學表達和交流提供有效途徑,也為解決現實問題提供重要工具,可以幫助學生准確、清晰地認識、理解數學的意義。在初中數學教學活動中,教師應採取有效措施,加強教學模型思想的滲透,提高學生的學習興趣,培養學生用數學意識以及分析和解決實際問題的能力。在解決問題中,拓展應用數學模型。用所建立的數學模型來解答生活實際中的問題,讓學生能體會到數學模型的實際應用價值,體驗到所學知識的用途和益處,進一步培養學生應用數學的意識和綜合應用數學解決問題的能力。3.改善學習方式促進數學建模教學 數學建模不同於單純的解題,它是一個綜合的過程。這一過程具有問題性,活動性,過程性,搜索性等特點,如下一些學習方式可以在數學建模中加以嘗試:(1)小課題學習方式 讓學生自主確定課題,設定課題研究計劃,完成以後提交課題研究報告。引導學生根據自已的生活經驗和對現實情境的觀察,提出研究課題。(2)協作式學習方式 在數學建模中可以小組為單位在組內進行合理分工,協同作戰,培養學生的合作交流能力。(3)開放式學習方式 在這里的開放是多種意義的,如打破課內課外界限,走入社會,進行數學調查;充分利用網路資源,收集建模有用信息,鼓勵對同一問題的不同建模方式。(4)信息技術環境中的學習方式 充分利用計算機的計算功能,展示功能,特有軟體包的應用功能等,尋求建模途徑,提高數學建模的有效性。
⑧ 初中數學的思想方法有哪些
初中數學的一些思想方法的話,一般會有數形結合,然後幾何思想,或者是畫圖思想。
⑨ 初中的11個數學模型是什麼
數與式模型、方程模型、不等式模型、初等函數模型、函數綜合模型、輔助線模型、幾何變換模型、圓模型、概率統計模型、開放探究模型、閱讀理解題模型 ,共11個。