⑴ 數學,在實際生活中的意義是什麼為什麼!
處處用數學,無處不在,簡單的你工資結算,語文數學為什麼是主科,因為都無處不在,生活不可或缺,說話打字發信息就是語文,這都是極簡單的。稍微困難點的,小區分布建築綠化車位樓層都是數學。
⑵ 初中數學函數表達的實際意義是什麼要如何表達
實際意義是在一個變化過程中(這個重要前提一定要有),當自變數x取一個確定的值時,函數y都有唯一的值與之對應.
表達的方式有三種:解析式法,圖像法,列表法.
⑶ 數學實際問題是什麼意思
摘要 數學實際問題又稱為應用題,主要考察學生的數學知識應用能力,考察學生能否將數學知識應用到現實的實際問題中。
⑷ 學數學實際是學什麼
我們學了這么多年的數學,有人不禁要問,我們究竟要學些什麼?不容置疑的是,我們要學習數學中的重要的結論,巧妙的技巧和廣泛的應用。但我認為, 數學思想 才是數學學習中最重要的一環。 數學從蒙昧時代到古希臘的繁榮,又跨越漫長的中世紀,完成常量數學向變數數學的飛躍,數學思想在其中起著不可磨滅的作用,它是數學靈魂的所在。笛卡兒坐標系思想的提出實現了幾何問題的代數化進程,開創了解析幾何的先河。他把代數和幾何結合起來而使兩者都得到極大的發展並且為牛頓發展微積分鋪平了道路,使得人類進入變數數學階段。克萊因觀點的提出給出了建立幾何學的一種方法,使得各種幾何學陸續建立起來,並使其在形式得到統一。克萊因觀點在幾何學的發展中起到了重大的作用,支配了近半個世紀的幾何學研究。 數學思想是人類智慧的結晶,學習數學的思想能夠使我們更加深刻的領會到數學的美,使我們更加自由的在數學王國中揚帆前行。我覺得,數學思想的學習應注意以下幾個方面: 一.勤於思考 幾乎所有的偉大發現都歸功於不斷的思考。著名科學家牛頓在被問到是什麼使得他發現了萬有引力定律時,他的回答非常簡單:「By thinking on it continually 。 」只有通過不斷的思考,我們的腦袋才能更加靈活,我們的思維才能更加敏捷,我們才能更具創新力。另外在思考的過程中我們應敢於提問題,善於提問題,勤於提問題。 二.善於借鑒 孔子說過:「學而不思則罔,思而不學則殆。」除了不斷的思考,我們還需要刻苦努力的學習。一個人的思維總是有限的,多借鑒別人的方法才能使自己的知識更豐富。向老師提問題,和同學一起討論,多看一些資料都是很好的學習方法。在借鑒別人的思維的過程中我們才能更容易的發現自己的不足,才能使自己的視野更加開闊。 三.善於運用 數學能取得今天這樣巨大的成就,這一切都離不開人類經濟貿易、自然科學尤其是天文學、物理學等方面研究的需要,理論與實踐相結合既是社會發展的需要,也是數學自身發展的需要。運用知識的過程既是熟悉知識的過程又是知識升華的過程。只有通過多運用所學知識解決實際生活中的問題,我們才能更加深刻的體會到數學思想的妙處,領會到那些傑出的數學家們提出這樣的思想的原因,從中找到通往數學知識寶庫的捷徑。 四.勇於創新 在學習的過程中我們必須明確:學習不是為了學習而學習,學習的目的是為了提高自己的創新能力,只有創新才是推動社會進步的動力。在深刻理解大師的思想後,我們自己去解決理論和實際生活中的問題,讓聰明的大腦中迸發出智慧的思想火花,為人類社會的發展貢獻自己的力量。另外在創新過程中我們要注意到:創新需要想像力。愛因斯坦說過:「 Imagination is more important than knowledge。」像天生愛做夢一樣,人也天生喜歡與眾不同。多發揮自己的想像力,提出自己獨到的見解,讓你的思想更具活力! 用思想的火花點綴那貧瘠的土地,我相信你一定會有一種煥然一新的感覺!數學的王國將不再是你想像的那麼枯燥,即使在孤獨的旅行中你也會感受到無限的樂趣!
⑸ 數學有什麼實際作用
數學這門學科,向來一般是以系統、邏輯、精確、嚴密等形象展示在世人面前。當我們在敘述和解決一個與數學有關問題的時候,追求或得到的結果必須是准確和精確無誤。即使是在運用數學知識去解決問題的過程中,無論是語言的表述或是論點的論證,也都需要有理有據的論證。
不過,這也正是數學的偉大和魅力所在之一,當我們去解決問題,必會形成新的知識理論,同時在解決問題的過程中產生新的問題,周而復始,不斷循環的推動著數學向前發展。從某個角度來講,問題的解決促進了數學的形成和發展。
問題的出現,代表著某一事物的內部出現矛盾,或是事物與事物產生了矛盾,而這些矛盾的斗爭或解決,需要的正是數學精髓。
因此,從某種意義上來講,學習數學就是學會如何去解決問題,最終解決了矛盾。
如非常著名的費馬大定理:當整數n > 2時,關於x,y,z的不定方程 xn + yn= zn無正整數解。
在早期的數學家手裡,他們能夠證明n=3、4、5、6……等特殊情況之下的費馬大定理是成立,但整數的個數是有無窮多個,一個個去證明是永遠算不完,也非常不現實。即使你從n=3開始到一個很大的整數都能連續證明費馬大定理都成立,但也許你會碰到一個更大的整數使定理不成立,甚至這樣的整數也可能存在著多個的情況等。
此時,擺在所有數學家面前最重要的任務,就是怎麼用有限的步驟去解決涉及到無窮的問題,即用一個完整且有限的步驟去證明費馬大定理的成立。
進入二十世紀之後,隨著計算機技術的不斷發展,數學家雖然能藉助於計算機完成數量巨大的費馬大定理證明,但最終也需要把無窮多的整數歸結成有限步驟證明的情形,沒有有限的證明步驟過程,所謂的計算機證明也只是一種特例。
因此,所有的數學家和科學家都認識到一點,解決數學問題永遠都需要去解決「有限與無窮」這一對立矛盾。一個數學問題只要有「無窮」的存在,那麼我們就需要主動去解決它,可以說這也是促進數學發展的根源之一。
從費馬大定理的提出到解決,耗費了近三個多世紀的時間,無數的數學家參與其中,如經過包括黎曼、莫德爾等許多數學家前赴後續的工作,把費馬大定理與代數曲線上的有理點(坐標都是有理數的點)聯系起來,這些種種轉化推動了數學相關領域的發展,也推動了費馬大定理的證明進程。
英國年輕的數學家懷爾斯利用前人研究並發展起來的橢圓函數理論及其研究成果,最終證明了費馬大定理。
費馬大定理的證明,不僅給大家提供了解決「有限與無窮」這一矛盾的啟示,更提醒世人要想解決問題,有時候需要作一定的變換,如把未解決的問題轉化為已知的或易於解決的領域的新問題去解決。
因此,當數學家去處理問題的時候,就會進行加工和創造,形成新的知識理論等。如早期的人類在發明自然數之後,在一定程度上解決了已有問題,但隨著社會的不斷發展,貿易的往來,就出現了負債的情況。此時,人們為了能更好解決新的問題,就必須創造出像0、負數這些知識概念。
像有理數、無理數、實數、復數等一系列知識的出現,都是因當時社會發展過程中不斷產生新的矛盾,發生問題,人們在解決這些問題過程中創造了新的知識理論。
數學史上最著名的矛盾問題,應該就屬「三次數學危機」,前兩次數學危機已經順利解決,但第三次數學危機其實並沒有完全解決。
第三次數學危機主要是由於在集合理論的邊緣發現悖論的存在,加上整個數學王國實質上是建立在集合論的基礎之上,它已經滲透到眾多的數學分支當中,因此集合論中悖論的發現自然地引起了對數學的整個基本結構的有效性的懷疑。
直白的講,當我們承認無窮集合和無窮基數的時候,就需要解決好「有限和無窮」這一矛盾,要不然很多數學問題就隨之而來,這也就是第三次數學危機的本質所在。
數學追求的是解決矛盾,解決問題,說白了是為了沒有矛盾。不過,到底什麼叫沒有矛盾呢?從邏輯學的角度來講,存在即合理,沒有矛盾,但這只是形式邏輯的規律。不過,數學要解決的並不是形式邏輯這么簡單,因為還要在「無窮」上證明沒有矛盾,而形式邏輯只是從人類有限經驗推出來而已。
雖然第三次數學危機表面上已經解決了,但它卻以其他形式存在數學當中,我們不能把認為存在矛盾的集合論全部扔掉,因為它們在一些領域當中又有著非常重要的作用。
數學,從來都不怕矛盾,不怕問題,因為隨著矛盾和問題的解決,能給數學和其他領域帶來許多新的知識內容和認知等,甚至會給人類社會帶來革命性的變化。
如人類近兩個世紀以來,無論是所取得的數學知識和成就,還是對事物的認識程度等,都比前幾個世紀加起來的還要多,特別是在第二次世界大戰之後,包括數學在內的很多學科,都迎來大爆發和快速發展,很多新成果層出不窮。
近代數學自從誕生集合論以來,就創造出了抽象代數學、拓撲學、泛函分析與測度論等重要數學分支,特別是像傳統的代數幾何、微分幾何、復分析等,都已經推廣到高維層面,如代數數論不斷經過很多數學家的完善,已經變得非常完美。
很多時候,一個問題的解決,必將會豐富相關的知識理論,甚至會產生新的問題,這也正是學習和研究數學的本質之一。
⑹ 數學是什麼意思
數學(mathematics或maths),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
數學分支
1:數學史
2:數理邏輯與數學基礎
X軸Y軸(4張)
a:演繹邏輯學(亦稱符號邏輯學)b:證明論 (亦稱元數學) c:遞歸論 d:模型論 e:公理集合論 f:數學基礎 g:數理邏輯與數學基礎其他學科
3:數論
a:初等數論 b:解析數論 c:代數數論 d:超越數論 e:丟番圖逼近 f:數的幾何 g:概率數論 h:計算數論 i:數論其他學科
4:代數學
a:線性代數 b:群論 c:域論 d:李群 e:李代數 f:Kac-Moody代數 g:環論 (包括交換環與交換代數,結合環與結合代數,非結合環與非結 合代數等) h:模論 i:格論 j:泛代數理論 k:范疇論 l:同調代數 m:代數K理論 n:微分代數 o:代數編碼理論 p:代數學其他學科
5:代數幾何學
6:幾何學
a:幾何學基礎 b:歐氏幾何學 c:非歐幾何學 (包括黎曼幾何學等) d:球面幾何學 e:向量和張量分析 f:仿射幾何學 g:射影幾何學 h:微分幾何學 i:分數維幾何 j:計算幾何學 k:幾何學其他學科
7:拓撲學
a:點集拓撲學 b:代數拓撲學 c:同倫論 d:低維拓撲學 e:同調論 f:維數論 g:格上拓撲學 h:纖維叢論 i:幾何拓撲學 j:奇點理論 k:微分拓撲學 l:拓撲學其他學科
8:數學分析
a:微分學 b:積分學 c:級數論 d:數學分析其他學科
9:非標准分析
10:函數論
a:實變函數論 b:單復變函數論 c:多復變函數論 d:函數逼近論 e:調和分析 f:復流形 g:特殊函數論 h:函數論其他學科
11:常微分方程
a:定性理論 b:穩定性理論 c:解析理論 d:常微分方程其他學科
12:偏微分方程
a:橢圓型偏微分方程 b:雙曲型偏微分方程 c:拋物型偏微分方程 d:非線性偏微分方程 e:偏微分方程其他學科
13:動力系統
a:微分動力系統 b:拓撲動力系統 c:復動力系統 d:動力系統其他學科
14:積分方程
15:泛函分析
a:線性運算元理論 b:變分法 c:拓撲線性空間 d:希爾伯特空間 e:函數空間 f:巴拿赫空間 g:運算元代數 h:測度與積分 i:廣義函數論 j:非線性泛函分析 k:泛函分析其他學科
16:計算數學
a:插值法與逼近論b:常微分方程數值解 c:偏微分方程數值解 d:積分方程數值解 e:數值代數 f:連續問題離散化方法 g:隨機數值實驗 h:誤差分析 i:計算數學其他學科
17:概率論
a:幾何概率 b:概率分布 c:極限理論 d:隨機過程 (包括正態過程與平穩過程、點過程等) e:馬爾可夫過程 f:隨機分析 g:鞅論 h:應用概率論 (具體應用入有關學科) i:概率論其他學科
18:數理統計學
a:抽樣理論 (包括抽樣分布、抽樣調查等 )b:假設檢驗 c:非參數統計 d:方差分析 e:相關回歸分析 f:統計推斷 g:貝葉斯統計 (包括參數估計等) h:試驗設計 i:多元分析 j:統計判決理論 k:時間序列分析 l:數理統計學其他學科
19:應用統計數學
a:統計質量控制 b:可靠性數學 c:保險數學 d:統計模擬
20:應用統計數學其他學科
21:運籌學
a:線性規劃b:非線性規劃 c:動態規劃 d:組合最優化 e:參數規劃 f:整數規劃 g:隨機規劃 h:排隊論 i:對策論 亦稱博弈論 j:庫存論 k:決策論 l:搜索論 m:圖論 n:統籌論 o:最優化 p:運籌學其他學科
22:組合數學
23:模糊數學
24:量子數學
25:應用數學 (具體應用入有關學科)
26:數學其他學科
發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意.古希臘學者視其為哲學之起點,「學問的基礎」.另外,還有個較狹隘且技術性的意義——「數學研究」.即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的.
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).[1]
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用.
具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學).
就縱度而言,在數學各自領域上的探索亦越發深入.
圖中數字為國家二級學科編號.
結構
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示.此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統.把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅理論解決了,它涉及到域論和群論.代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法.
空間
空間的研究源自於歐式幾何.三角學則結合了空間及數,且包含有非常著名的勾股定理、三角函數等。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學.數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色.在微分幾何中有著纖維叢及流形上的計算等概念.在代數幾何中有著如多項式方程的解集等幾何對象的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間.李群被用來研究空間、結構及變化.
基礎
旋轉曲面(8張)
主條目:數學基礎
為了弄清楚數學基礎,數學邏輯和集合論等領域被發展了出來.德國數學家康托爾(1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的思想,為以後的數學發展作出了不可估量的貢獻.
集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具.20世紀初,數學家希爾伯特在德國傳播了康托爾的思想,把集合論稱為「數學家的樂園」和「數學思想最驚人的產物」.英國哲學家羅素把康托的工作譽為「這個時代所能誇耀的最巨大的工作」
邏輯
主條目:數理邏輯
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果.就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果.現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關聯性.
符號
主條目:數學符號
也許我國古代的算籌是世界上最早使用的符號之一,起源於商代的占卜.
我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的.在此之前,數學是用文字書寫出來,這是個會限制住數學發展的刻苦程序.現今的符號使得數學對於人們而言更便於操作,但初學者卻常對此感到怯步.它被極度的壓縮:少量的符號包含著大量的訊息.如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼.
嚴謹性
數學語言亦對初學者而言感到困難.如何使這些字有著比日常用語更精確的意思,亦困惱著初學者,如開放和域等字在數學里有著特別的意思.數學術語亦包括如同胚及可積性等專有名詞.但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性.數學家將此對語言及邏輯精確性的要求稱為「嚴謹」.
嚴謹是數學證明中很重要且基本的一部分.數學家希望他們的定理以系統化的推理依著公理被推論下去.這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或"證明",而這情形在歷史上曾出現過許多的例子.在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹.牛頓為了解決問題所作的定義,到了十九世紀才讓數學家用嚴謹的分析及正式的證明妥善處理.今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度.當大量的計算難以被驗證時,其證明亦很難說是有效地嚴謹.
數量
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的有理和無理數.
另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較.
簡史
西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術.第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破.除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了.
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普.歷史上曾有過許多各異的記數系統.
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究.
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備.但尚未出現極限的概念.
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明.隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展.
中國數學簡史
主條目:中國數學史
數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合.
⑺ 數學真正的含義是什麼
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使所有的人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著奇普,印加帝國時所使用的計數工具。數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικ�0�2�0�9(mathematikós)意思是「學問的基礎」,源於μ�0�4θημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」
⑻ 數學里的實際問題和實際應用是一個意思嗎
摘要 實際問題和實際應用基本上是差不多的,但意思上還有細微的差距。
⑼ 數學的含義是什麼
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。因此,我們可以學習群、環、域和其他的抽象系統。
把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究。這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性。組合數學研究列舉滿足給定結構的數對象的方法。
應用數學及美學
一些數學只和生成它的領域有關,且用來解答此領域的更多問題。但一般被一領域生成的數學在其他許多領域內也十分有用,且可以成為一般的數學概念。即使是「最純的」數學通常亦有實際的用途,此一非比尋常的事實,被1963年諾貝爾物理獎得主維格納稱為「數學在自然科學中不可想像的有效性」。
如同大多數的研究領域,科學知識的爆發導致了數學的專業化。主要的分歧為純數學和應用數學。在應用數學內,又被分成兩大領域,並且變成了它們自身的學科——統計學和計算機科學。
許多數學家談論數學的優美,其內在的美學及美。「簡單」和「一般化」即為美的一種。另外亦包括巧妙的證明,如歐幾里得對存在無限多素數的證明;又或者是加快計算的數值方法,如快速傅里葉變換。
高德菲·哈羅德·哈代在《一個數學家的自白》一書中表明他相信單單是美學上的意義,就已經足夠作為純數學研究的正當理由。
以上內容參考網路-數學