㈠ 小學數學中體現的數學思想與方法有哪些
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
㈡ 小學數學中可以培養哪些數學思想
1.符號思想。數學課程標准要求,在小學階段要培養和發展學生的符號感,我們知道,運用一套合適的符號,可以清晰、准確、簡潔地表達數學思想、概念、方法和法則,避免日常語言的繁復、冗長或含混不清,從而簡化數學運算或推理過程,加快數學思維的速度,促進數學思想的交流。如講到乘法的諸多運算律時,就把復雜的語言文字敘述用簡潔明了的字母公式表示出來,便於記憶、便於運用。
2.數形結合思想方法。數形結合思想是充分利用「形」把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數量關系,使問題簡明直觀。如諸多的行程問題,我們就可以用線段圖來清楚的讓學生直接感知到總路程、已行路程和剩下路程之間的關系;再如分數應用題的解答,用圓形圖或者線段圖表示整體與部分的關系,讓學生的解答問題是一目瞭然,顯而易懂,對學生的思維和想像能力大有提高。
3.分類思想方法。分類思想也是對小學生培養的一種重要思想方法。一般分類時要求滿足互斥,無遺漏、最簡便的原則。如整數以能否被2整除為例,可分為奇數和偶數;若以自然數的約數個數來分類,則可分為質數、合數和1。幾何圖形中的分類更常見,如學習「角的分類」時,涉及到許多概念,而這些概念之間的關系培養著量變到質變的規律。其中幾種角是按照度數的大小,從量變到質變來分類的,由此推理到在三角形中以最大一個角大於、等於和小於90°為分類標准,可分為鈍角三角形、直角三角形和銳角三角形。而三角形以邊的長短關系為分類標准,又可分為不等邊三角形和等邊三角形,等邊三角形又可分為正三角形和等腰三角形。通過分類,建構了知識網路,不同的分類標准會有不同的分類結果,從而產生新的數學概念和數學知識的結構。
4.集合思想方法。現代的課堂教學,不僅僅要向學生傳授知識,更為重要的是要把含在教材中的集合思想有意識地對學生進行培養,這樣有利於培養學生的抽象概括能力,有利於提高學生分析和解決問題的能力。如:教學分類把某些具有共同屬性的動物、植物和幾何圖形等分別用一個「圈」(封閉曲線)圈起來成為一個整體,這個整體就是集合。在教學求8和12的最大公約數時,可以製作課件或幻燈片,讓學生從圖中可以清楚直觀地知道8和12的公約數是1、2和4,最大公約數是4,這樣孕伏了交集的思想。
5.化歸思想方法。就是在解決數學問題時,不是對問題進行直接進攻,而是採取迂迴的戰術,通過變形把要解決的問題,化歸為某個已經解決的問題,從而求得原問題的解決。它的基本形式有:化難為易,化生為熟,化繁為簡,化整為零,化曲為直等。在小學數學中蘊藏著各種可運用化歸的方法進行解答的內容,讓學生初步學會化歸的思想方法。如:教學圓面積的計算方法,這里要推導出圓面積公式,在推導過程中,採用把圓分成若乾等份,然後拼成一個近似長方形,從而推導出圓的面積公式。這里把圓剪拼成近似長方形的過程,就是把曲線形化歸為直線形的過程。
6.建模思想方法。所謂數學模型是對於現實世界的某一特定研究對象,為了某個目的,在作了一些必要的簡化和假設之後運用適當的數學工具,並通過數學語言表達出來的一個數學結構。而數學建模思想就是把現實世界中有待解決或未解決的問題,從數學的角度發現問題、提出問題、理解問題,通過轉化過程,歸結為一類已經解決或較易解決的問題中去,並綜合運用所學的數學知識與技能求得解決的一種數學思想和方法。
二、我是怎樣培養學生的數學思想的。
結合自己的教學實踐,現在我向大家分享一下自己是如何在教學實踐中培養和發展學生的各種數學思想的:
首先注重在知識形成過程中培養。像數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有形的,而數學思想方法卻隱含在數學知識體系裡,是無形的,並且不成體系地分散在教材各章節之中。因此數學思想方法必須通過具體的教學過程加以實現。因此在教學中,我們要把握好在教學過程中對學生進行數學思想方法教學的契機,它時時應該滲透在每一個概念的形成過程中,每一種結論的推導過程中,每一道習題解題方法的思考過程、思路探索和規律揭示的過程中等,要有意識地潛移默化地啟發學生領悟蘊含於數學知識之中的種種數學思想方法。
其次是要注重在問題解決過程中培養。數學思想方法存在於問題的解決過程中,數學問題的步步轉化無不遵循著數學思想方法的指導。培養數學思想方法,不僅可以加快和優化問題解決的過程,而且還可以達到,會一題而明一路,通一類的效果。通過培養,盡量讓學生達到對數學思想方法內化的境界,提高獨立獲取知識的能力和獨立解決問題的能力。
再次是要注意在反復運用過程中培養。在解決學習重點、突破學習難點及解決具體數學問題中,數學思想方法是起著至關重要的作用,這些問題的解決過程,無一不是數學思想方法反復運用的過程,因此,時時注意數學思想方法的運用既有條件又有可能,這是進行數學思想方法教學行之有效的普遍途徑.數學思想方法也只有在反復運用中,得到鞏固與深化。
總之,加強對學生數學思想方法的培養和訓練,不僅是課程標准對我們提出的必然要求,也是為孩子學會學習提供的重要智力幫助,在平時的課堂教學中,重視加強對學生進行數學思想方法的培養不但有利於提高課堂教學效率,而且有利於提高學生的數學文化素養和思維能力。但是,我們也要清楚地認識到,對學生數學思想方法的培養,不是一朝一夕、一蹴而就的,而是需要有一個過程。因此,在教學過程中,要有機地結合數學知識的內容,做到持之以恆、循序漸進和反復訓練,才能使學生真正地領悟數學思想方法。
㈢ 小學階段所涉及到的數學思想方法有哪些
1.符號思想
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學的內容,這就是符號思想。符號思想是將復雜的文字敘述用簡潔明了的字母公式表示出來,便於記憶,便於運用。把客觀存在的事物和現象及它們相互之間的關系抽象概括為數學符號和公式,有一個從具體到表象再抽象的過程。在數學中各種量的關系,量的變化以及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式來表達大量的信息。
2.化歸思想
化歸思想是數學中最普遍使用的一種思想方法,其基本思想是:把甲問題的求解,化歸為乙問題的求解,然後通過乙問題的解反向去獲得甲問題的解。它的基本原則是:化難為易,化生為熟,化繁為簡。
3.轉換思想
轉換思想是一種解決數學問題的重要策略,是由一種形式變換成另一種形式的思想方法。對問題進行轉換時,既可轉換已知條件,也可轉換問題的結論。用轉換思想來解決數學問題,轉換僅是第一步,第二步要對轉換後的問題進行求解,第三步要將轉換後問題的解答反演成問題的解答。
4.類比思想
數學上的類比思想是指依據兩類數學對象的相似性,將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔,從而可以激發起學生的創造力。
㈣ 小學數學基本基本思想
小學數學「基本思想」主要是指演繹和歸納,這應當是整個數學教學的主線,是最上位的思想。 演繹和歸納不是矛盾的,其教學也不是矛盾的,通過歸納來預測結果,然後通過演繹來驗證結果。在具體的問題中,會涉及到數學抽象、數學模型、等量替換、數形結合等數學思想, 但最上位的思想還是演繹和歸納。之所以用「基本思想」而不用基本思想方法,就是要與換元法、遞歸法、配方法等具體的數學方法區別。每一個具體的方法可能是重要的,但它們是個案,不具有一般性。作為一種思想來掌握是不必要的,經過一段時間,學生很可能就忘卻了。這里所說的思想,是大的思想,是希望學生領會之後能夠終生受益的那種思想方法。
㈤ 小學數學四大思想八大方法是什麼
小學數學四大思想數形結合、等價變換、數學歸納法、反證法,八大方法是逆向思維方法、假設思維方法、消元思維方法、轉化思維方法、對應思維方法、聯想思維方法、發散思維方法、量不變思維方法。
小學數學的重要性
數學具有指導生活的作用數學從表面上看是一門嚴肅嚴謹的學科,但其實數學影響著我們日常生活的方方面面。我們從一出生到耋耄之年,一直就沒有離開過數學,或者說我們根本無法離開數學。
數學一直在潛移默化地在細微之處影響著我們的生活,並且我們在小學時代逐漸形成的數學思維會一直影響我們今後的學習生活,讓我們生活得更加精緻幸福。
㈥ 小學數學思想有哪些最好舉例說明!
對應思想、假設思想、比較思想、符號化思想、類比思想、轉化思想、分類思想、集合思想、數形結合思想、統計思想、極限思想、代換思想、可逆思想、化歸思想、變中抓不變的思想、數學模型思想、整體思想等。
㈦ 小學數學中哪些是基本的數學思想
小學數學中常見的數學思想方法有:
轉化思想、集合思想、數形結合思想、函數思想、符號化思想、對應思想、分類思想、歸納思想、模型思想、統計思想等。
㈧ 小學數學課程標准中所說的基本思想指的是哪些
《數學課程標准》中所說的「數學的基本思想」主要指:
數學(抽象)的思想、數學(推理)的思想、數學建模的思想。
學生在積極參與教學活動的過程中,通過獨立思考、合作交流,逐步感悟數學思想。
總體目標
通過義務教育階段的數學學習,學生能:
1. 獲得適應社會生活和進一步發展所必需的數學的基礎知識、基本技能、基本思想、基本活動經驗。
2. 體會數學知識之間、數學與其他學科之間、數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現和提出問題的能力、分析和解決問題的能力。
3. 了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度。
小學數學新課程標準的特點:
數與代數現行大綱這部分內容主要側重有關數、代數式、方程、函數的運算,《標准》對此作了較大地改革:
1.重視數與符號意義以及對數的感受,體會數字用來表示和交流的作用。通過探索豐富的問題情景發展運算的含義,在保持基本筆算訓練的前提下,強調能夠根據題目條件尋求合理、簡捷的運算途徑和運算方法,加強估算,引進計算器,鼓勵演算法多樣化。
2.對於應用問題:選材強調現實性、趣味性和可探索性;題材呈現形式多樣化(表格、圖形、漫畫、對話、文字等);強調對信息材料的選擇與判斷(信息多餘、信息不足);解決的策略多樣化;問題答案可以不唯一;淡化人為編制的應用題類型及其解題分析。
3.使學生初步體會數學可以發現、描述、分析客觀世界中多種多樣的模式,把握事物的變化和事物間的關系;初步發展學生的符號意識,學會用符號表達現實問題中的一些基本關系,會初步進行符號運算。
4.體會方程和函數是刻劃現實世界,有效地表示、處理、交流和傳遞信息的強有力工具,是探究事物好發展規律,預測事物發展的重要手段,重視對簡單現實頭問題的建模過程,學會選擇有效的符號運算程序和方法解決問題,重視近似解法特別是圖象解法。
㈨ 小學數學思想有哪些
「基本思想」主要是指演繹和歸納,這應當是整個數學教學的主線,是最上位的思想。 演繹和歸納不是矛盾的,其教學也不是矛盾的,通過歸納來預測結果,然後通過演繹來驗證結果。在具體的問題中,會涉及到數學抽象、數學模型、等量替換、數形結合等數學思想, 但最上位的思想還是演繹和歸納。之所以用「基本思想」而不用基本思想方法,就是要與換元法、遞歸法、配方法等具體的數學方法區別。每一個具體的方法可能是重要的,但它們是個案,不具有一般性。作為一種思想來掌握是不必要的,經過一段時間,學生很可能就忘卻了。這里所說的思想,是大的思想,是希望學生領會之後能夠終生受益的那種思想方法。