❶ 數學史上第一次危機的克服
無 理 數 的 發 現 —— 第 一 次 數 學 危 機
大約公元前5世紀,不可通約量的發現導致了畢達哥拉斯悖論。當時的畢達哥拉斯學派重視自然及社會中不變因素的研究,把幾何、算術、天文、音樂稱為"四藝",在其中追求宇宙的和諧規律性。他們認為:宇宙間一切事物都可歸結為整數或整數之比,畢達哥拉斯學派的一項重大貢獻是證明了勾股定理,但由此也發現了一些直角三角形的斜邊不能表示成整數或整數之比(不可通約)的情形,如直角邊長均為1的直角三角形就是如此。這一悖論直接觸犯了畢氏學派的根本信條,導致了當時認識上的"危機",從而產生了第一次數學危機。
到了公元前370年,這個矛盾被畢氏學派的歐多克斯通過給比例下新定義的方法解決了。他的處理不可通約量的方法,出現在歐幾里得《原本》第5卷中。歐多克斯和狄德金於1872年給出的無理數的解釋與現代解釋基本一致。今天中學幾何課本中對相似三角形的處理,仍然反映出由不可通約量而帶來的某些困難和微妙之處。第一次數學危機對古希臘的數學觀點有極大沖擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之卻可以由幾何量來表示出來,整數的權威地位開始動搖,而幾何學的身份升高了。危機也表明,直覺和經驗不一定靠得住,推理證明才是可靠的,從此希臘人開始重視演譯推理,並由此建立了幾何公理體系,這不能不說是數學思想上的一次巨大革命!
❷ 數學的歷史上,都經歷過什麼樣的危機
三次數學危機
❸ 第一次數學危機是什麼
第一次數學危機
從某種意義上來講,現代意義下的數學,也就是作為演繹系統的純粹數學,來源予古希臘畢達哥拉斯學派。它是一個唯心主義學派,興旺的時期為公元前500年左右。他們認為,「萬物皆數」(指整數),數學的知識是可靠的、准確的,而且可以應用於現實的世界,數學的知識由於純粹的思維而獲得,不需要觀察、直覺和日常經驗。
整數是在對於對象的有限整合進行計算的過程中產生的抽象概念。日常生活中,不僅要計算單個的對象,還要度量各種量,例如長度、重量和時間。為了滿足這些簡單的度量需要,就要用到分數。於是,如果定義有理數為兩個整數的商,那麼由於有理數系包括所有的整數和分數,所以對於進行實際量度是足夠的。
有理數有一種簡單的幾何解釋。在一條水平直線上,標出一段線段作為單位長,如果令它的定端點和右端點分別表示數0和1,則可用這條直線上的間隔為單位長的點的集合來表示整數,正整數在0的右邊,負整數在0的左邊。以q為分母的分數,可以用每一單位間隔分為q等分的點表示。於是,每一個有理數都對應著直線上的一個點。
古代數學家認為,這樣能把直線上所有的點用完。但是,畢氏學派大約在公元前400年發現:直線上存在不對應任何有理數的點。特別是,他們證明了:這條直線上存在點p不對應於有理數,這里距離op等於邊長為單位長的正方形的對角線。於是就必須發明新的數對應這樣的點,並且因為這些數不可能是有理數,只好稱它們為無理數。無理數的發現,是畢氏學派的最偉大成就之一,也是數學史上的重要里程碑。
無理數的發現,引起了第一次數學危機。首先,對於全部依靠整數的畢氏哲學,這是一次致命的打擊。其次,無理數看來與常識似乎相矛盾。在幾何上的對應情況同樣也是令人驚訝的,因為與直觀相反,存在不可通約的線段,即沒有公共的量度單位的線段。由於畢氏學派關於比例定義假定了任何兩個同類量是可通約的,所以畢氏學派比例理論中的所有命題都局限在可通約的量上,這樣,他們的關於相似形的一般理論也失效了。
「邏輯上的矛盾」是如此之大,以致於有一段時間,他們費了很大的精力將此事保密,不準外傳。但是人們很快發現不可通約性並不是罕見的現象。泰奧多勒斯指出,面積等於3、5、6、……17的正方形的邊與單位正方形的邊也不可通約,並對每一種情況都單獨予以了證明。隨著時間的推移,無理數的存在逐漸成為人所共知的事實。
❹ 第一次數學危機是怎麼回事
第一次數學危機:無理數的發現
大約公元前5世紀,不可通約量的發現導致了畢達哥拉斯悖論。當時的畢達哥拉斯學派重視自然及社會中不變因素的研究,把幾何、算術、天文、音樂稱為"四藝",在其中追求宇宙的和諧規律性。他們認為:宇宙間一切事物都可歸結為整數或整數之比,畢達哥拉斯學派的一項重大貢獻是證明了勾股定理,但由此也發現了一些直角三角形的斜邊不能表示成整數或整數之比(不可通約)的情形,如直角邊長均為1的直角三角形就是如此。這一悖論直接觸犯了畢氏學派的根本信條,導致了當時認識上的"危機",從而產生了第一次數學危機。
到了公元前370年,這個矛盾被畢氏學派的歐多克斯通過給比例下新定義的方法解決了。他的處理不可通約量的方法,出現在歐幾里得《原本》第5卷中。歐多克斯和狄德金於1872年給出的無理數的解釋與現代解釋基本一致。今天中學幾何課本中對相似三角形的處理,仍然反映出由不可通約量而帶來的某些困難和微妙之處。 第一次數學危機對古希臘的數學觀點有極大沖擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之卻可以由幾何量來表示出來,整數的權威地位開始動搖,而幾何學的身份升高了。危機也表明,直覺和經驗不一定靠得住,推理證明才是可靠的,從此希臘人開始重視演譯推理,並由此建立了幾何公理體系,這不能不說是數學思想上的一次巨大革命!
❺ 數學史上的三次危機及如何化解
一、希伯斯(Hippasu,米太旁登地方人,公元前5世紀)發現了一個腰為1的等腰直角三角形的斜邊(即根號2)永遠無法用最簡整數比(不可公度比)來表示,從而發現了第一個無理數,推翻了畢達哥拉斯的著名理論。相傳當時畢達哥拉斯派的人正在海上,但就因為這一發現而把希伯斯拋入大海。
解決:
1、伯內特解釋了芝諾的「二分法」:即不可能在有限的時間內通過無限多個點,在你走完全程之前必須先走過給定距離的一半,為此又必須走過一半的一半,等等,直至無窮。
亞里士多德批評芝諾在這里犯了錯誤:「他主張一個事物不可能在有限的時間里通過無限的事物,或者分別地和無限的事物相接觸,須知長度和時間被說成是「無限的」有兩種涵義。
一般地說,一切連續事物被說成是「無限的」都有兩種涵義:或分起來的無限,或延伸上的無限。因此,一方面,事物在有限的時間里不能和數量上無限的事物相接觸。
另一方面,卻能和分起來無限的事物相接觸,因為時間本身分起來也是無限的。因此,通過一個無限的事物是在無限的時間里而不是在有限的時間里進行的,和無限的事物接觸是在無限數的而不是在有限數的范圍上進行的。
2、亞里士多德指出這個論證和前面的二分法是一回事,這個論證得到的結論是:跑得慢的人不可能被趕上。
因此,對這個論證的解決方法也必然是同一個方法,認為在運動中領先的東西不能被追上這個想法是錯誤的,因為在它領先的時間內是不能被趕上的,但是,如果芝諾允許它能越過所規定的有限的距離的話,那麼它也是可以被趕上的。
3、亞里士多德認為芝諾的這個說法是錯誤的,因為時間不是由不可分的『現在』組成的,正如別的任何量都不是由不可分的部分組合成的那樣。亞里士多德認為,這個結論是因為把時間當作是由『現在』組成的而引起的,如果不肯定這個前提,這個結論是不會出現的。
4、亞里士多德認為,這里錯誤在於他把一個運動物體經過另一運動物體所花的時間,看做等同於以相同速度經過相同大小的靜止物體所花的時間,事實上這兩者是不相等的。
二、微積分的合理性遭到嚴重質疑,險些要把整個微積分理論推翻。
解決:經過柯西(微積分收官人)用極限的方法定義了無窮小量,微積分理論得以發展和完善,從而使數學大廈變得更加輝煌美麗!
三、羅素悖論:S由一切不是自身元素的集合所組成,那S包含S嗎?用通俗一點的話來說,小明有一天說:「我正在撒謊!」問小明到底撒謊還是說實話。羅素悖論的可怕在於,它不像最大序數悖論或最大基數悖論那樣涉及集合高深知識,它很簡單,卻可以輕松摧毀集合理論!
解決
1、排除悖論,危機產生後,數學家紛紛提出自己的解決方案。人們希望能夠通過對康托爾的集合論進行改造,通過對集合定義加以限制來排除悖論,這就需要建立新的原則。「這些原則必須足夠狹窄,以保證排除一切矛盾;另一方面又必須充分廣闊,使康托爾集合論中一切有價值的內容得以保存下來。」
1908年,策梅羅在自己這一原則基礎上提出第一個公理化集合論體系,後來經其他數學家改進,稱為ZF系統。這一公理化集合系統很大程度上彌補了康托爾樸素集合論的缺陷。除ZF系統外,集合論的公理系統還有多種,如諾伊曼等人提出的NBG系統等。
2、公理化集合系統,成功排除了集合論中出現的悖論,從而比較圓滿地解決了第三次數學危機。但在另一方面,羅素悖論對數學而言有著更為深刻的影響。它使得數學基礎問題第一次以最迫切的需要的姿態擺到數學家面前,導致了數學家對數學基礎的研究。
而這方面的進一步發展又極其深刻地影響了整個數學。如圍繞著數學基礎之爭,形成了現代數學史上著名的三大數學流派,而各派的工作又都促進了數學的大發展等等。
(5)數學的第一次危機怎麼解決的擴展閱讀:
在類的公理體系中,有一些基本的概念是不加定義的,我們只能從其客觀含義上給予解釋,但這樣的解釋僅僅起到幫助理解這些概念。
數學中研究的任何一個客體對象都稱為一個類。類的概念是沒有任何限制。類與類之間可能存在著一種稱為屬於的關系,類A屬於類B,此時也稱類A是類B的一個元素(簡稱為元)。
我們可以把類理解成為是由若干元素組成的一個整體。一個類是否是另一個類的元素是完全確定的,這就是類元素的確定性。類A如果不是類B的元素,則稱A不屬於B。
❻ 怎麼解決第一次數學危機
第一次數學危機,是數學史上的一次重要事件,發生於大約公元前400年左右的古希臘時期,自根號二的發現起,到公元前370年左右,以無理數的定義出現為結束標志。這次危機的出現沖擊了一直以來在西方數學界占據主導地位的畢達哥拉斯學派,同時標志著西方世界關於無理數的研究的開始。
危機解決編輯
關於無理數
約在公元前370年,柏拉圖的學生攸多克薩斯(Eudoxus,約公元前408—前355)解決了關於無理數的問題。他純粹用公理化方法創立了新的比例理論,微妙地處理了可公度和不可公度。他處理不可公度的辦法,被歐幾里得《幾何原本》第二卷(比例論)收錄。[5] 並且和狄德金於1872年繪出的無理數的現代解釋基本一致。21世紀後的中國中學幾何課本中對相似三角形的處理,仍然反映出由不可通約量而帶來的某些困難和微炒之處。
關於芝諾悖論
芝諾的四條悖論在後來被亞里士多德等人成功解釋完畢。
第一條悖論:伯內特解釋了芝諾的「二分法」:即不可能在有限的時間內通過無限多個點,在你走完全程之前必須先走過給定距離的一半,為此又必須走過一半的一半,等等,直至無窮。亞里士多德批評芝諾在這里犯了錯誤:「他主張一個事物不可能在有限的時間里通過無限的事物,或者分別地和無限的事物相接觸,須知長度和時間被說成是「無限的」有兩種涵義。一般地說,一切連續事物被說成是「無限的」都有兩種涵義:或分起來的無限,或延伸上的無限。因此,一方面,事物在有限的時間里不能和數量上無限的事物相接觸;另一方面,卻能和分起來無限的事物相接觸,因為時間本身分起來也是無限的。因此,通過一個無限的事物是在無限的時間里而不是在有限的時間里進行的,和無限的事物接觸是在無限數的而不是在有限數的范圍上進行的。
第二條悖論:亞里士多德指出這個論證和前面的二分法是一回事,這個論證得到的結論是:跑得慢的人不可能被趕上。因此,對這個論證的解決方法也必然是同一個方法,認為在運動中領先的東西不能被追上這個想法是錯誤的,因為在它領先的時間內是不能被趕上的,但是,如果芝諾允許它能越過所規定的有限的距離的話,那麼它也是可以被趕上的。[4]
第三條悖論:亞里士多德認為芝諾的這個說法是錯誤的,因為時間不是由不可分的『現在』組成的,正如別的任何量都不是由不可分的部分組合成的那樣。亞里士多德認為,這個結論是因為把時間當作是由『現在』組成的而引起的,如果不肯定這個前提,這個結論是不會出現的。
第四條悖論:亞里士多德認為,這里錯誤在於他把一個運動物體經過另一運動物體所花的時間,看做等同於以相同速度經過相同大小的靜止物體所花的時間,事實上這兩者是不相等的。
❼ 第一次數學危機是怎樣解決的呢
由畢達哥拉斯學派成員的學生歐多克斯(Eudoxus)提出新的比例理論而暫時消除危機。
❽ 歷史上的「數學危機」結局是怎樣的
第一次數學危機,自根號二的發現起,以無理數的定義出現為結束標志。德國數學家戴德金從連續性的要求出發,用有理數的“分割”來定義無理數,並把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續2000多年的數學史上的第一次大危機。
❾ 如何化解第一次數學危機
所謂的【第一次數學危機】
指的是無理數的發現(不可通約性的發現),引起了「邏輯上的矛盾」,許多當時的數學家都無法解釋,
在當時的數學界來說,是一個極大的震撼,造成了所謂的【第一次數學危機】
其實,無理數的發現,是畢氏學派的最偉大成就之一,也是數學史上的重要里程碑
第一次數學危機是怎樣解決的呢?
面對著事實,數學家展開廣闊的胸襟,把「無理數」引入數學的大家庭,令數學更豐富更完備,加添了無理數,數線終於被填滿,第一次數學危機也得以解決
非歐幾何學也由此誕生……
❿ 第一次數學危機最終如何解決了
所謂的【第一次數學危機】
指的是無理數的發現(不可通約性的發現),引起了「邏輯上的矛盾」,許多當時的數學家都無法解釋,
在當時的數學界來說,是一個極大的震撼,造成了所謂的【第一次數學危機】
其實,無理數的發現,是畢氏學派的最偉大成就之一,也是數學史上的重要里程碑
第一次數學危機是怎樣解決的呢?
面對著事實,數學家展開廣闊的胸襟,把「無理數」引入數學的大家庭,令數學更豐富更完備,加添了無理數,數線終於被填滿,第一次數學危機也得以解決
非歐幾何學也由此誕生……