㈠ 數學一共包括哪些內容
高中數學主要是代數,三角,幾何三個部分.內容相互獨立但是解題時常互相提供方法,等高三你就知道了. 必修的: 代數部分有: 1 集合與簡易邏輯.其實就是集合,命題,充要條件三點,很淺顯高考也不會單出這類的題 2 函數.先是對於函數的描述,有映射定義域對應法則植域;然後是性質,三個,單調性奇偶性周期性;最後是指數函數還有對數函數,是兩個基本的函數,要研究他們的性質和圖象 3 三角.三角其實就是個工具,比較煩人,公式背下來再多練練用的滾瓜爛熟就行了 4 幾何.也就是平面解析幾何,用坐標法定量的研究平面幾何問題.學幾個定義,然後是直線的方程,圓的方程,圓錐曲線方程. 高考的重點一般在 常用函數 常用雙曲線+直線 數列 三角 二項式定理 立體幾何 排列組合加概率等其他一些知識是比較小的部分 重要的是基礎 高一的話上課的基本解題方法一定要熟練掌握 並且不能忘記 到了高三再練習就很麻煩了 還有不要忽視概念 往往很多題目是考概念的 難度方面要視文理科而定 但是70%題目肯定用基本知識就能做的 20%需要結合各種知識並且動腦 真正有難度的題目只有10% 高中數學學習方法談 進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。 一、 高中數學與初中數學特點的變化 1、數學語言在抽象程度上突變 初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。 2、思維方法向理性層次躍遷 高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。 3、知識內容的整體數量劇增 高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。 4、知識的獨立性大 初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。 二、如何學好高中數學 1、養成良好的學習數學習慣。 建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。 2、及時了解、掌握常用的數學思想和方法 學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。 解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。 3、逐步形成 「以我為主」的學習模式 數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。
㈡ 數學一包括哪些
數學一包括三部分:一、高等數學;二、線性代數;三、概率論與數理統計;具體章節內容見考試大綱要求。
㈢ 數學思考包括哪些內容
數學思考包括的內容:
1、建立數感、符號意識和空間觀念,初步形成幾何直觀和運算能力,發展形象思維和抽象思維。
2、體會統計方法的意義,發展數據分析觀念,感受隨機現象。
3、在參與觀察、實驗、猜想、證明、綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。
4、學會獨立思考,體會數學的基本思想和思維方式。
㈣ 數學三包含什麼內容
考試科目
微積分、線性代數、概率論與數理統計
形式結構
1、試卷滿分及考試時間
試卷滿分為150分,考試時間為180分鍾.
2、答題方式
答題方式為閉卷、筆試.
3、試卷內容結構
微積分 56%
線性代數 22%
概率論與數理統計 22%
4、試卷題型結構
試卷題型結構為:
單項選擇題選題8小題,每題4分,共32分
填空題 6小題,每題4分,共24分
解答題(包括證明題) 9小題,共94分
(4)數學包含哪些內容擴展閱讀
須使用數學二的招生專業
工學門類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中所有的二級學科、專業。
須選用數學一或數學二的招生專業(由招生單位自定)
工學門類中的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業選用數學一,對數學要求較低的選用數學二。
須使用數學三的招生專業
1、經濟學門類的各一級學科。
2、管理學門類中的工商管理、農林經濟管理一級學科。
3、授管理學學位的管理科學與工程一級學科。
㈤ 數學分析包括哪些內容
又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
早期的微積分,已經被數學家和天文學家用來解決了大量的實際問題,但是由於無法對無窮小概念作出令人信服的解釋,在很長的一段時間內得不到發展,有很多數學家對這個理論持懷疑態度,柯西(Cauchy)和後來的魏爾斯特拉斯(weierstrass)完善了作為理論基礎的極限理論,擺脫了「要多小有多小」、「無限趨向」等對模糊性的極限描述,使用精密的數學語言來描述極限的定義,使微積分逐漸演變為邏輯嚴密的數學基礎學科,被稱為「Mathematical Analysis」,中文譯作「數學分析」。
實數系最重要的特徵是連續性,有了實數的連續性,才能討論極限,連續,微分和積分。正是在討論函數的各種極限運算的合法性的過程中,人們逐漸建立起了嚴密的數學分析理論體系。
㈥ 數學包括那些內容比如幾何。。
數學包括幾何,幾何有微分幾何,射影幾何,平面幾何,分析幾何等等,代數有同調代數,交換代數等等,分析,有實分析和復分析等等,拓撲,有點集拓撲,代數拓撲等等,代數幾何,微分方程,太多了,細化下去,需要很大的篇幅,一個人就只能學那麼一點點,所以不能學數學,浪費生命啊。
㈦ 數學包括哪些部分
數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門科學。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學的基本要素是:邏輯和直觀、分析和推理、共性和個性。
㈧ 數學包括哪些
高等數學分為上下冊,線性代數與數理統計分別為獨立的學科,當然了。他們全部屬於數學。只是研究的內容不一樣,但高等數學相對時另兩門的基礎也就是要用到高等數學,尤其是數理統計必須要會微積分,而微積分又是高數當中的最重要問題不算是最核心,最核心的算是極限,沒有極限就美譽高等數學。線性代數與數理統計側重於應用。尤其是一些工程應用。但又不是工程數學,工程數學指的是復變函數與積分變換。學了你就知道了,他們是一脈相承的。數學大廈的頂峰還早呢,數值分析,矩陣論,泛函分析。只要你有能力深造,就有你深造的。
㈨ 數學到底包含哪些方面
應用數學包含哪些方面
應用數學包含兩個詞:"應用"和"數學"。大體而言,應用數學就包括兩個部分,一部分就是與應用有關的數學,這是傳統數學的一支,我們可稱之為"可應用的數學"。另外一部分是數學的應用,就是以數學為工具,探討解決科學、工程學和社會學方面的問題,這是超越傳統數學的范圍。
具體來講,數學是人類活動中的一個項目,即使全是由人腦產生的最純粹的數學,也與自然界的規律相關聯,遲早會對自然規律的掌握或其他方面有用處的。我們將現在已可應用,或者即將就可應用的數學稱之為可應用的數學。以目前的發展而言,大概像微分方程、概率統計、計算數學、計算機數學,和運籌學等都算在可應用的數學范圍內。另一類則"數學的應用"。物理學家、航空工程師、地質學家、生物學家、經濟學家等,他們為了解決各學科及工程上的問題,需要用數學用為工具。因此,他們有時要把已經發展得很完善的數學搬過來用,有時候卻不得不自己創造性地發展新的數學方法,來處理他們所遇到的獨特問題。這就是數學的應用。他們往往要求不太高的嚴謹,常需要配合觀察實驗結果及經驗所賦予的直覺來發展數學方法。所以除了相當水平的數學修養外,應用數學家們對應用主題的學科還必須有相當深度了解。
㈩ 數一的內容包括哪些
考研數一都包含的內容:高等教學約56%,線性代數約22%,概率論與數理統計約22%。