導航:首頁 > 數字科學 > 4數學的意義是什麼

4數學的意義是什麼

發布時間:2022-07-07 17:58:38

① 數學4是指什麼

數學一是一般的理工科要考的,如計算機/材料等理工專業
數學二是對數學要求略微低一點的專業要考的,但他與數學一基本相當。如紡織專業
數學三是偏向於經濟類別的考生,如經濟管理 偏向概率
數學四是其它對數學要求相對低的學科。

2006年全國碩士研究生入學考試
數學四考試大綱
數學四
考試科目
微積分、線性代數、概率論
微 積 分
一、 函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、隱函數 分段函數 基本初等函數的性質及其圖形
初等函數 簡單應用問題的函數關系的建立
數列極限與函數極限的定義及其性質 函數的左極限與右極限無窮小和無窮大的概念及其關系 無窮小的性質及無窮小的比較 極限的四則運算 極限存在的兩個准則:單調有界准則和夾逼准則 兩個重要極限:

函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求
1、 理解函數的概念,掌握函數的表示法,會建立簡單應用問題中的函數關系。
2、 了解函數的有界性、單調性、周期性和奇偶性。
3、 理解復合函數及分段函數的概念,了解隱函數及反函數的概念。
4、 掌握基本初等函數的性質及其圖形,理解初等函數的概念
5、 了解數列極限和函數極限(包括坐極限和右極限)的概念。
6、 理解無窮小的概念和基本性質,掌握無窮小的比較方法,了解無窮大的概念及其無窮小的關系。
7、 了解極限的性質與極限存在的兩個准則,掌握極限四則運演算法則,會應用兩個重要極限。
8、 理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
9、 了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理)及其簡單應用。
二、 一元函數微分學
考試內容
導數的概念 導數的幾何意義和經濟意義 函數的可導性與連續性之間的關系 導數的四則運算 基本初等函數的導數 復合函數、反函數和隱函數的導數 高階導數 微分的概念和運演算法則 一階微分形式的不變性
羅爾定理和拉格郎日中值定理及其應用 洛必達(L』Hospital)法則 函數單調性 函數的極值 函數圖形的凹凸性、拐點及漸近線 函數圖形的描繪 函數的最大值和最小值
考試要求
1、 理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)。
2、 掌握基本初等函數的導數公式、導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數,會求反函數與隱函數的導數」。 3、 了解高階導數的概念,會求簡單函數的高階導數
4、 了解微分的概念,導數與微分之間的關系,以及一階微分的形式的不變性,會求函數的微分。
5、 理解羅爾(Rolle)定理和拉格郎日中值定理、掌握這兩個定理的簡單應用。
6、 會用洛必達法則求極限。
7、 掌握函數單調性的判別方法及其應用,掌握函數極值、最大值和最小值的求法,會求解較簡單的應用題。
8、 會用導數判斷函數圖形的凹凸性,會求函數圖形的拐點和斜漸近線。
9、會作簡單函數的圖形。
三、 一元函數的積分學
考試內容
原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 廣義積分 定積分的應用。
考試要求
1、 理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法。
2、 了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓-萊布尼茨公式,以及定積分的換元積分法和分部積分法。
3、 會利用定積分計算平面圖形的面積和旋轉體的體積,會利用定積分求解簡單的經濟應用問題。
4、 了解廣義積分的概念,會計算廣義積分
四、 多元函數微積分學
考試內容
多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念 有界閉區域上二元連續函數的性質 多元函數的偏導數的概念與計算 多元復合函數的求導法與隱函數求導法 二階偏導數 全微分 多元函數的極值和條件極值、最大值和最小值 二重積分的概念、基本性質和計算 無界區域上簡單二重積分的計算。
考試要求
1、 了解多元函數的概念,了解二元函數的幾何意義。
2、 了解二元函數的極限與連續的直觀意義,了解有界閉區域上二元連續函數的性質。
3、 了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數 會求全微分,會用隱函數的求導法則。
4、 了解多元函數的極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格郎日乘數法求條件極值,會求簡單多元函數的最大值和最小值,會求解一些簡單的應用題。
5、 了解二重積分的概念與基本性質,掌握二重積分(直角坐標、極坐標)的計算方法,了解無界區域上的較簡單的廣義二重積分並會計算」 五、 常微分方程
考試內容
常微分方程的基本概念 變數可分離的微分方程 齊次微分方程一階線性微分方程
考試要求
1、 了解微分方程及其解、階、通解、初始條件和特解等概念。
2、 掌握變數可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。
線 性 代 數
一、 行列式
考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1、 了解行列式的概念,掌握行列式的性質。
2、 會應用行列式的性質和行列式按行(列)展開定理計算行列式。
二、 矩陣
考試內容
矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算
考試要求
1、 理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣,反對稱矩陣及正交矩陣等的定義和性質。
2、 掌握矩陣的線性運算、乘法、以及它們的運算規律,掌握矩陣轉置的性質,了解方陣的冪,掌握方陣乘積的行列式的性質。
3、 理解逆矩陣的概念,掌握逆矩陣的性質,以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。
4、 了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。
5、 了解分塊矩陣的概念,掌握分塊矩陣的運演算法則。
三、 向量
考試內容
向量的概念 向量的線性組合和線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的正交規范化方法。
考試要求
1、 了解向量的概念,掌握向量的加法和數乘運演算法則。
2、 理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法。
3、 理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩。
4、 了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關系。
5、 了解內積的概念、掌握線性無關向量組正交規范化的施密特(Schmidt)方法。
四、 線性方程組
考試內容
線性方程組的克萊母(又譯:克拉默)(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線性方程組(導出組)的解之間的關系 非齊次線性方程組的通解。
考試要求
1、 會用克萊母法則解線性方程組。
2、 掌握非齊次線性方程組有解和無解的判定方法。
3、 理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的方法。
4、理解非齊次線性方程組的結構及通解的概念。
5、掌握初等行變換求解線性方程組的方法。
五、 矩陣的特徵值和特徵向量
考試內容
矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值和特徵向量及相似對角矩陣。
考試要求
1、 理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法。
2、 理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。
3、 掌握實對稱矩陣的特徵值和特徵向量的性質。
概 率 論
一、 隨機事件和概率
考試內容
隨機事件與樣本空間 事件的關系與運算 完全事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗
考試要求
1. 了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件間的關系及運算。
2、理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握計算概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯公式等。
3、理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。
二、 隨機變數及其概率分布
考試內容
隨機變數 隨機變數的分布函數的概念及其性質 離散型隨機變數的概率分布 連續型隨機變數的概率密度 常見隨機變數的概率分布 隨機變數函數的概率分布
考試要求
1. 理解隨機變數及其概率分布的概念;理解分布函數
F(x)=P{X≤x} (-∞<x<+∞)
的概念及性質;會計算與隨機變數相聯系的事件的概率。
2、理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布、超幾何分布、泊松(Poisson)分布及其應用。
3、掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布。
4、理解連續型隨機變數及其概率密度的概念,掌握均勻分布、正態分布N(μ,σ2) 、指數分布及其應用,其中參數為λ(λ>0)的指數分布的密度函數為

5.會求隨機變數函數的分布。
三、 隨機變數的聯合概率分布
考試內容
隨機變數的聯合分布函數 離散型隨機變數的聯合概率分布、邊緣分布和條件分布 二維連續型隨機變數的概率密度、邊緣概率密度和條件密度 隨機變數的獨立性和不相關性 常見二維隨機變數的分布 兩個及兩個以上隨機變數的函數的分布。
考試要求
1、 理解隨機變數的聯合分布函數的概念和基本性質。
2、 理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度,掌握兩個隨機變數的邊緣分布和條件分布。
3、 理解隨機變數的獨立性和不相關性的概念,掌握隨機變數的獨立條件;理解隨機變數的不相關性與獨立性的關系。
4、 掌握二維均勻分布和二維正態分布,理解其中參數的概率意義。
5、 會根據兩個隨機變數的聯合概率分布求其函數的分布;會根據多個獨立隨機變數的概率分布求其函數的分布。
四、 隨機變數的數字特徵
考試內容
隨機變數的數學期望(均值)、方差、標准差及其性質 隨機變數函數的數學期望 切比雪夫不等式 矩、協方差 相關系數及其性質。
考試要求
1、 理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數學特徵的基本性質,並掌握常用分布的數字特徵。
2、 會求隨機變數函數的數學期望。
3、了解切比雪夫不等式。
五、 中心極限定理
考試內容
隸莫弗-拉普拉斯(De Moivre-Laplace)定理 列維-林德伯格(Levy-Lindberg)定理。
考試要求
1、 了解隸莫弗-拉普拉斯中心極限定理(二項分布以正態分布為極限分布)、列維-林德伯格中心極限定理(獨立同分布隨機變數列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率。
試 卷 結 構
(一) 題分及考試時間
試卷滿分為150分,考試時間為180分鍾。
(二) 內容比例
高等數學 約50%
線性代數 約25%
概率論 約25%
(三) 題型比例
填空題與選擇題 約40%
解答題(包括證明)約60%

② 四的數字是代表什麼意義

一般性質
[編輯本段]

小寫 四
大寫 肆
進位制 四進制
因數分解 2^2
羅馬數字 IV或IIII
阿拉伯數字 4
二進制 100
十六進制 4
數學
偶數,最小的合成數,共有因子1, 2, 4
1/4 = 0.25
高度合成數
第二個平方數。另外, 2 + 2 = 2 \times 2 = 2^2 = 4 。
自然數中第一個非斐波那契數
最小的史密夫數
四的倍數均是兩個平方數的差。 4x = y^2 - z^2
每4個連續的自然數相乘加一,必定會等於一個平方數
四平方和定理:每個自然數可表示成最多4個平方數的和
正四面體是最小面數的正多面體。
在一個平面的地圖上,一定可以用四種顏色來填每個區域而相鄰的區域顏色不相同,即四色定理。
最小的非循環群有四個元素,叫做Klein four-group. Four is also the order of the smallest non-trivial groups that are not simple.
笛卡兒 直角坐標系將平面分成4份。
最基本最常見的四種運算,加、減、乘、除,稱之為四則運算。

4次單變數多項式方程是具有一般求解公式的最高次數的方程----伽羅華理論
4維歐氏空間具有不同的微分結構, 其他任何高維空間都不具有這種性質。
4維閔科夫斯基空間---愛因斯坦狹義相對論所討論的基本時空。
閔科夫斯基原理:任何包含原點、面積大於4、凸的閉區域都包含一個異於原點的整點。

宗教與神話傳說
四法界:中國佛教華嚴宗基本教義之一,對萬有的四種認識層次,分為事法界、理法界、理事無礙法界、事事無礙法界。
歷史
清初四藩:清初封有功的明將吳三桂、尚可喜、孔有德、耿仲明等四人為王。

在人類文化中
[編輯本段]

漢語基本的四聲∶平聲、上聲、去聲、入聲,簡稱平上去入。普通話中的四聲則分成陰平、陽平、去聲、上聲,無入聲。
在普通話、粵語、韓語和日語-{zh-cn:里;zh-tw:里}-,「四」的讀音近似「死」,被認為是不吉祥的數字,因此有不少公司沒有含「4」的東西 (例如在香港,有些大廈沒有4樓、14樓等;香港新渡輪是沒有名字為「4號」的船隻,如新輝肆、新輪捌拾肆;另外在台灣是沒有個位數為「4」的車牌);但在吳語中讀音近似「水」,甚至是帶有吉祥的含義。
四書,儒家最重要的四本典籍∶大學、中庸、論語、孟子。
四部:多指經、史、子、集。
四端:惻隱之心(仁之端)、羞惡之心(義之端)、辭讓之心(禮之端)、是非之心(智之端)(見孟子·公孫丑上)
國之四維是禮、義、廉、恥(管子·牧民篇) 。
四王:「清六家」中王時敏、王鑒、王翚。王原祁四人的合稱。
四史:1. 史記 漢· 司馬遷130 2 漢書 漢· 班固 100 3 後漢書 南朝宋· 范曄 120 4 三國志 晉·陳壽 65
四人幫:「四人幫」指的是江青、張春橋、姚文元和王洪文四人。
四大發明:指南針、火葯、造紙術、活字印刷術
四大佛山:峨眉山、九華山、五台山、普陀山
在科學中
[編輯本段]
四種基本的相互作用力:電磁力、弱相互作用、強相互作用、引力
相對論將宇宙視為四維的空間
鈹的原子序數

在其它領域中
[編輯本段]

一年有四季(四時)。
四孟:孟春、孟夏、孟秋、孟冬,四季的第一個月。
在英文數目名稱中,4(four)是唯一一個擁有字母的數目和本身所指的數目相同的。
四個基本方向∶東、南、西、北。
四肢即雙手雙腳。
四美:
良辰、美景、賞心、樂事。
仁、義、忠、信。
治、安、顯、榮。
音樂、珍味、文章、言談。
四民:舊稱士、農、工、商。

③ 數學的重要性及深遠意義

數學教育看起來只是一種知識教育,但本質上是一種素質教育。我們所接受的數學訓練,所領會的數學思想和精神,所獲得的數學教養,無時無刻不在發揮著積極的作用,成為取得成功的最重要的因素。。

本文為李大潛院士在復旦大學數學科學學院2016級新生迎新大會上的講話。

李大潛:中國數學家,復旦大學數學系教授,中國科學院院士。對絕大多數人來說,數學是一生中學得最多的一門課程:從小學到中學,從中學到大學,包括到了研究生的學習階段,都在學習數學。為什麼要花這么多時間來學習數學?又為什麼一定要努力學好數學呢?

如果認為這種學習只是為了執行學校與老師的規定,只是為了應付有關的考試並取得一個好的成績,只是為了混得一張文憑將來找一個高收入的工作,或者只是為了或多或少掌握一些有關的數學知識,那麼即使進了數學科學學院,也必然會對數學學習採取一個被動和應付的態度,學習的效果也必然會受到很大的影響。

因此,這個看來似乎很平凡的問題其實很值得大家認真地想一想。

無處不在的數學

要搞清為什麼要學好數學,首先要認識數學這門學科本身的重要性。

世間的萬事萬物都有數與形這兩個側面,數學作為研究現實世界中的數量關系和空間形式的科學,是剔除了物質的其它具體特性,僅僅從數與形的角度來研究整個世界的。數學的作用和地位,現在看來,概括起來可以有以下幾條:

1 常青的知識

作為小學、中學到大學必修的重要課程,數學是人類必不可少的知識,這一點不會有人疑問。

人類的許多發現就像過眼煙雲,很多學科是從推翻前人的結論而建立新的理論的;然而,古往今來數學的發展,不是後人摧毀前人的成果,而是每一代的數學家都在原有建築的基礎上,再添加一層新的建築。因而,數學的結論往往具有永恆的意義。

歐幾里得是二千多年以前的古希臘數學家,然而,以他命名的歐幾里得幾何至今還在發揮著重要的作用,其中的勾股定理,不僅沒有被人認為老掉了牙而不屑一顧,相反還被人稱為千古第一定理,一直被高度頌揚、反復應用,就充分地說明了這一點。

勾股定理的面積證明法

2 科學的語言

伽利略曾說過:「大自然這本書是用數學語言寫成的……除非你首先學懂了它的語言……否則這本書是無法讀懂的。」數學這種科學的語言,是十分精確的,這是數學這門學科的特點。

同時,這種語言又是世界通用的。加減乘除,乘方開方,指數對數,微分積分,常數等等,這些數學語言和

④ 數字4是代表什麼含義

4」這個數字並不是不吉利的含義,是一個無關好壞的數字。
一方面,我國人在讀「4」時,往往認為與「死」諧音,因此是一個不吉利的數字,但是這種不吉利的來源是沒有根據並且不科學的。
數字「四」卻也被人稱為吉祥數,這與音樂有著不可分割的密切關系。音樂發音序列「4」即為
「fa」,而「fa」的中文解釋為繁榮、富足。於是乎,四平八穩、四通八達這樣的短語就出現了。
中國的
「四書
」聞名世界,一年之中四季輪回都與「四」有關。然而「四」在西方文化中並無任何特殊意義,一些國家認為四代表公平、正義、強大。

⑤ 數學的含義是什麼

數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。

許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。

此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。因此,我們可以學習群、環、域和其他的抽象系統。

把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。

代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究。這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性。組合數學研究列舉滿足給定結構的數對象的方法。

應用數學及美學

一些數學只和生成它的領域有關,且用來解答此領域的更多問題。但一般被一領域生成的數學在其他許多領域內也十分有用,且可以成為一般的數學概念。即使是「最純的」數學通常亦有實際的用途,此一非比尋常的事實,被1963年諾貝爾物理獎得主維格納稱為「數學在自然科學中不可想像的有效性」。

如同大多數的研究領域,科學知識的爆發導致了數學的專業化。主要的分歧為純數學和應用數學。在應用數學內,又被分成兩大領域,並且變成了它們自身的學科——統計學和計算機科學。

許多數學家談論數學的優美,其內在的美學及美。「簡單」和「一般化」即為美的一種。另外亦包括巧妙的證明,如歐幾里得對存在無限多素數的證明;又或者是加快計算的數值方法,如快速傅里葉變換。

高德菲·哈羅德·哈代在《一個數學家的自白》一書中表明他相信單單是美學上的意義,就已經足夠作為純數學研究的正當理由。

以上內容參考網路-數學

⑥ 數學的意義。

數學的意義:

1、數學是人類探究世界,研究自然界任何事物的核心;

2、數學衍生出了物理學、化學、生物學,數學不斷推動著人類的發展;

3、數學是公理、約定的支點,有了數學,研究才得以繼續;

4、數學衍生出二維、三維、高維,是這些事物存在的基礎。

一、中學數學有什麼用?

1、初中數學學什麼?

我們以現行初中數學教材(六三制)為例:

七年級(上):有理數;整式的加減;一元一次方程;幾何圖形初步;
七年級(下):相交線與平行線;實數;平面直角坐標系;二元一次方程;不等式和不等式組;數據的收集、整理與描述;
八年級(上):三角形;全等三角形;軸對稱;整式的乘法與因式分解;分式;
八年級(下):二次根式;勾股定理;平行四邊形;一次函數;數據的分析;
九年級(上):一元二次方程;二次函數;旋轉;圓;概率初步;
九年級(下):反比例函數;相似;銳角三角函數;投影和視圖。
這6冊書的內容其實可以按照研究的內容重新整理成為3個模塊。

代數模塊:有理數;整式的加減;一元一次方程;實數;平面直角坐標系;二元一次方程;不等式和不等式組;整式的乘法與因式分解;分式;二次根式;一次函數;一元二次方程;二次函數;反比例函數。
幾何模塊:幾何圖形初步、相交線與平行線;三角形;全等三角形;軸對稱;勾股定理;平行四邊形;旋轉;圓;相似;銳角三角函數;投影和視圖。
統計模塊:數據的收集、整理與描述;數據的分析;概率初步。
數學在難度上的突然提升一般在初二上學期。這個時期,無論幾何證明還是代數式化簡,其解題對模式識別和技巧要求很高,學生需要一定量的訓練,這個過程是枯燥乏味的;同時還需要一定的觀察力,成績拉開是在這個階段,不少學生對數學興趣喪失也是在這個階段。

2、高中數學學什麼?

原新課標高中教材:

必修部分:

必修1:集合;函數(概念、性質、一次函數和二次函數);基本初等函數I(指數函數、對數函數和冪函數)
必修2:立體幾何初步(空間幾何體、位置關系);解析幾何初步(平面直角坐標系、直線方程、圓方程、空間直角坐標系)
必修3:演算法初步;統計;概率
必修4:基本初等函數II(三角函數);平面向量;三角恆等變換
必修5:解三角形;數列;不等式
選修1系列(文科):

選修1-1:常用邏輯用語;圓錐曲線與方程;導數及其應用
選修1-2:統計案例、推理與證明、數系的擴充與復數的引入、框圖
選修2系列(理科):

選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2-2:導數及其應用、推理與證明、數系的擴充與復數
選修2-3:計數原理、概率、統計案例
其他選修課

3-1數學史、3-3球面幾何、3-4對稱與群論、4-1幾何證明選講、4-2矩陣與變換、4-4坐標系和參數方程、4-5不等式選講、4-6初等數論初步、4-7優選法與試驗設計初步、4-9風險與決策。
很多省份高考選考題是從4-1幾何證明選講、4-4坐標系和參數方程、4-5不等式選講這三部分中出題,應該說是比較適應大學高等數學的學習的,但沒選擇矩陣還是令人遺憾。

新版新課標高中教材

必修A版共兩冊:

第一冊:集合與常用邏輯用語;一元二次函數、方程和不等式;函數的概念和性質;指數函數與對數函數;三角函數
第二冊:平面向量及其應用;復數;立體幾何初步;統計;概率
必修B版共四冊:

第一冊:集合與常用邏輯用語;等式與不等式;函數;
第二冊:指數函數、對數函數與冪函數;統計與概率;平面向量初步
第三冊:三角函數;向量的數量積和三角恆等變換;
第四冊:解三角形;復數;立體幾何初步
選擇性必修共三冊:

第一冊:空間向量與立體幾何;直線和圓的方程;圓錐曲線的方程
第二冊:數列;一元函數的導數及其應用
第三冊:計數原理;隨機變數及其分布;成對數據的統計分析
綜上,高中內容也可大致歸納為三個模塊:

函數與代數模塊:集合與常用邏輯用語;函數的概念和性質;初等函數(指數函數、對數函數、冪函數、三角函數包括三角恆等變換);平面向量(平面向量初步、向量的數量積、解三角形);等式與不等式;數列;一元函數的導數及其應用
幾何模塊:1)立體幾何—空間幾何體;空間位置關系;空間向量與立體幾何;2)解析幾何—直角坐標系;直線和圓的方程;圓錐曲線的方程
概率與統計模塊:統計與概率(數據的收集、特徵和表示、樣本估計總體;隨機事件和獨立性、古典概型);計數原理(排列組合、二項式);隨機變數及其分布(隨機變數和條件概率);成對數據的統計分析(相關和回歸)
3、中學課程與大學課程的銜接:

數學根據研究對象的不同,可以並不準確地劃分為簡單的四個部分:

代數的研究對象是代數結構和運演算法則;
幾何的研究對象是圖形性質和空間關系變化;
分析的研究對象是函數也就是變數關系的性質;
數論的研究對象是整數的性質。
之所以說並不準確,是因為數學學科作為一個門類,各個部分之間彼此聯系得非常緊密,各個專門領域之間相互借鑒之處甚多,很難嚴格地將它們互相區分。例如初中數學中的函數圖像,高中數學中的三角函數、解析幾何、向量,都是這方面的典型體現。

一般而言,如果不是專門研究數學的大學生,在本科階段最主要的數學課程是高等數學、線性代數、概率論和數理統計這三門課程,這也是考研數學的主要內容。高等數學就屬於分析范疇,線性代數屬於代數范疇,概率論和數理統計屬於應用數學范疇,但需要分析和代數工具。幾何和數論一般只有數學系和少數專業學習。

中學數學知識是學習大學數學知識的基礎,這就是學習中學數學的意義所在。下面我來大致梳理一下中學數學知識的聯系,以及它們如何構成大學數學的學習基礎。

先說代數和分析:

小學我們做的計算題都是數的運算,結果就是一個數,所以學的都是數的運演算法則。到了小學高年級,我們開始學到用字母表示數,這叫做代數式。

「代數」是晚清數學家李善蘭譯介到中國來的,取其「以字代數」之意。代數式是一種語言體系的轉換,我們可以通過這種方式構造公式,將運算一般化,得到通用的解法;等到面對具體問題時,在將具體的數代入公式中,就可以解決問題了;而代數研究的目的就是尋求通用的解法。公元820年,波斯數學家花剌子模發表了一份代數學領域的專著,闡述了一次和二次方程的通用解法,明確提出了代數中的一些基本概念,把代數發展成為一門與幾何相提並論的獨立學科。書名中首次使用了al jabr一詞,其含義是「重新整合」,也就是移項與合並同類項。 轉譯為拉丁語後,變成了 algebra,後來又進入了英語。這就是「代數」一詞的詞源含義。

引入代數式之後出現了數系的擴充。隨著處理的數字越來越復雜,加減乘除的四則運算不能夠得到自然數的結果,a-b(a<b,a和b都是整數)引出了負數,a/b(a<b,b≠0,a和b都是整數)引出了分數。所以我們把原來的整數擴展為有理數。這是另一種語言體系的轉換,我們使得運算的范圍擴大了。

然後我們開始學習整式(字母不做分母的代數式,包括單項式和多項式)的加減和乘法,並且學了整式乘法的逆運算——因式分解,即如何將一個復雜多項式轉化成簡單多項式的乘法;並且從另一條主線上,我們也學習了整式方程即一元一次方程、二元一次方程和不等式。整式也能夠做除法,變成分式,同時也可以做分式方程。但是,在解一元二次方程時遇到了開方問題,這種運算與四則運算不同,得到的結果不一定是有理數,於是我們接受了無理數的存在,並將數系擴充到實數。開方運算有一些特殊的運演算法則,例如負數不能開平方之類,這種法則同樣代數式同樣要遵守,這就是根式。有了這些基礎,一元二次方程的問題就能夠解決了,我們得到了一元二次方程的通用解法——求根公式。

學了好了基本的運算(加減乘除和開方)和方程以後,引入了函數,引入函數以後,數學的語言體系就又提高了一個新的層次。研究函數和應用函數,是分析的主要任務。函數之重要性,說它是現代數學最重要的概念也不為過。世界上的事物是普遍聯系的,但是傳統的自然哲學對這種聯系的分析都是定性的:比如用火加熱,水的溫度就會上升;用力越大,彈簧拉得越長;而現代科學則需要對這種聯系進行定量分析,找到聯系的普遍規律,這就需要用到函數工具。初中物理里的關於加熱的公式Q=Cm(T2-T1)、彈簧受力的公式N=k(x-x0)以及高中物理的萬有引力公式F=GMm/r2,本質上都是這種藉助函數工具進行定量研究的產物。函數是中學數學承上啟下的核心知識,初中函數的應用基本是在解方程和不等式上,而高中數學除了一部分幾何和統計知識以外,幾乎完全建構在函數理論之上。

高中數學首先引入集合語言,引出後文對函數的定義。集合論是現代數學各個分支領域的基石,但是高中水平的數學幾乎用不到這個東西,只需要會進行簡單的集合運算就可以。然後開始深入研究函數的單調性、奇偶性等一般性質,初等函數(指數函數、對數函數、冪函數、三角函數)的特殊性質,以及一種自變數為正整數,因變數為實數的特殊函數——數列,即實數序列。三角函數引出平面向量,其運演算法則反映出的向量代數也是一次數學語言的重大飛躍:我們發現能夠運算的不僅是數和代數式,還有有序的數和代數式。然後是不等式,你也許會疑惑學這么復雜的不等式干什麼,但到了大學學習真正的數學分析就會知道,不等式證明技巧是學習數學分析必備的本領。這些基礎打牢以後,就開始學習極限和導數,高中數學到此就戛然而止了。函數、數列、不等式、導數是高中數學最難的部分,這些也是高等數學基礎的基礎。高考題的最後一題,基本上就是函數、數列、不等式和導數的綜合應用。

到了大學,接續這部分的內容就是大名鼎鼎的高等數學,其中絕大多數內容也就是微積分。數學專業則學習數學分析,這是用更嚴密的論證體系來學習微積分。不過,無論是高數、數分,研究的函數都比較直觀,基本上都是連續函數,或者說黎曼可積函數。而不滿足上述條件的實函數,則需要基於集合論、測度論和勒貝格積分的實變函數理論來研究。在另一個方向上,函數的變數也不都是實數,如果變數是復數,則由復變函數或者復分析這門學科來研究。自變數除了數以外,還可以是函數,函數的函數叫做泛函,研究泛函以及無限維空間變換的理論叫做泛函分析,這是比實分析和復分析更加抽象的數學。此外,方程中也可以用微積分,研究如何求解包含微積分的方程的領域叫做微分方程,其中研究包含一元函數微積分的叫常微分方程,研究包含多元函數微積分的叫偏微分方程。分析領域的各個學科都跟理論物理的學習和研究有很大的關聯。

高中的平面向量和空間向量,其主要作用是為解三角形和立體幾何證明打基礎,從應用角度講算作幾何模塊更恰當。學到平面向量和空間向量,中學代數的內容就戛然而止了。到了大學,一次方程組被重新拉回視野。因為一次函數的圖像是一條直線,所以一次方程組也叫線性方程組,線性代數就是從研究線性方程組的通用解法開始入門。通過運用n元向量、矩陣和行列式,最終得到了線性方程組的通用解法——克萊默法則(但是後面我們會知道,行列式的計算非常復雜,克萊默法則遠不如高斯消元法好用,線性代數和高等代數只是拿線性方程組作為引子,引出線性空間這個核心,而這種解線性方程組的任務就交給計算數學專業的數值代數課程了)。與此同時,我們運算的對象也擴展到了向量和矩陣;我們發現,這些運算很相似,都有類似的結構,數學家將其進一步抽象為線性空間,並將研究線性空間的性質和變換作為線性代數的主要任務。而我們直觀上能夠感受到的三維空間,則是線性空間的一種特殊形式。為了研究這種特殊形式,引入了雙線性函數和二次型,得到了內積運算,進而將線性空間特殊化為度量空間,這樣線性空間理論就有了能夠用於幾何研究或解決實際問題的用途。線性空間是最簡單的代數學研究對象,除此以外代數學的研究對象還有群、環、域等,研究這些對象及其性質的後續課程叫做抽象代數或者近世代數。初中幾何遇到的三等分角、立方倍積和化圓為方三大不可作圖問題的證明就需要用到抽象代數的知識。高中選修3-4對稱與群、4-2矩陣與變換,分別對應著群論(抽象代數的部分內容)和矩陣代數(線性代數的簡單部分),可以課余時間讀一讀。

然後我們再說說幾何:

幾何的英文是Geometry,Geo-是「大地」的詞根,-metry是「測量」的詞根。Geometry直接意思就是「土地測量」。幾何起源於古埃及,因為埃及的尼羅河每年的周期性泛濫帶來大量肥沃土壤,但是土地的分界也都會被沖毀,因此每年古埃及人都要重新丈量土地,在長期實踐中總結的測量技術逐漸發展成為最初的幾何學

⑦ 在數學中4!是什麼意思

4!表示4的階乘,即4!=4×3×2×1
一個正整數的階乘(英語:factorial)是所有小於及等於該數的正整數的積,並且0的階乘為1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。
亦即n!=1×2×3×...×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n。

⑧ 數字1 2 3 4 5 6 7 8 9 0各代表什麼有什麼含義

在數學史上,阿拉伯數字被稱作「印度-阿拉伯數字」。它是古代印度人發明的,後來由印度傳到阿拉伯,12世紀初又由阿拉伯傳到歐洲,歐洲人稱它為「阿拉伯數字」。印度數碼早在公元8世紀初葉就傳到中國,但沒有流行開來。直到20世紀初,隨著近代數學在中國的興起,阿拉伯數字才被廣泛地使用。阿拉伯數字是世界上最完善的數字制。它的優點是:筆畫簡單、結構科學、形象清晰、組數簡短,所以被世界各國普遍應用,成為一套國際通行的數字體系。在我國,一個時期以來,特別是出版物實行橫排之後,阿拉伯數字的使用范圍擴大了,不僅用於數學及其他自然科學出版物,一般出版物凡是在涉及數字(如表示時間、長度、質量、面積、容積等量值)時,也開始使用阿拉伯數字,但由於缺乏統一的體例,各種出版物上數字用法十分混亂。為糾正這種混亂狀況, 1987 年 1 月 1 日,國家語言文字工作委員會、國家出版局、國家標准局、國家計量局、國務院辦公廳秘書局、中宣部新聞局、中宣部出版局聯合發布了《關於出版物上數字用法的試行規定》。這個規定試行了 8 年, 後經修訂,於 1995 年 12 月 13 日由國家技術監督局正式作為國家標准頒布,從 1996 年 6 月 1日起實施。
阿拉伯數字趣談

阿拉伯人對世界文化的傳播與交流所做的重大貢獻中,「阿拉伯數字」的發展和傳播是其中之一。

阿拉伯數字堪稱天才的發明。我們今天的生活中,天天都要與1、2、3、4、5、6、7、8、9、0這些數字打交道。

在阿拉伯數字發明和傳播以前,沒有這十個數字元號,人們如何計數呢?那時候,聰明的人才會用一根垂直線表示1,兩根垂直線表示2。如果是10呢,就用n這個符號來表示,至於百、千、萬等,還得用另外的符號來表示。當然,這是很麻煩的,比如98,就得用九個n和八根垂直線來表示。後來,羅馬人改進了一步。他們採用在高數值符號的左面加上一個低數值符號的辦法來表示這個高數值減去低數值後得到的數。例如用L表示50,X表示10,那麼XL就表示40。反之,在高數值符號右面放一個低數值符號,則表示它們相加後的數值,例如LX就表示60。但這種方法仍然不太方便,直到阿拉伯數字出現後,人們的困擾才被解除。
現在我們把數字1、2、3、4、5、6、7、8、9、0稱為「阿拉伯數字」。實際上,這些數字並不是阿拉伯人創造出來的,它們原「產」於印度。那末,為什麼又把它們叫做阿拉伯數字呢?

公元500年前後,隨著經濟、文化以及佛教的興起和發展,印度次大陸西北部的旁遮普地區的數學一直處於領先地位。天文學家阿葉波海特在簡化數字方面有了新的突破:他把數字記在一個個格子里,如果第一格里有一個符號,比如是一個代表1的圓點,那麼第二格里的同樣圓點就表示十,而第三格里的圓點就代表一百。這樣,不僅是數字元號本身,而且是它們所在的位置次序也同樣擁有了重要意義。以後,印度的學者又引出了作為零的符號。可以這么說,這些符號和表示方法是今天阿拉伯數字的老祖先了。

公元700年前,阿拉伯人征服了旁遮普地區,他們吃驚地發現:被征服地區的數字比他們先進。用什麼方法可以將這些先進的數字也搬到阿拉伯去呢?

771年,印度北部的數學家被抓到了阿拉伯的巴格達,被迫給當地人傳授新的數學符號和體系,以及印度式的計算方法(即我們現在用的計演算法)。由於印度數字和印度計數法既簡單又方便,其優點遠遠超過了其他的計演算法,阿拉伯的學者們很願意學習這些先進知識,商人們也樂於採用這種方法去做生意。

後來,阿拉伯人把這種數字傳入西班牙。公元10世紀,又由教皇熱而貝·奧里亞克傳到歐洲其他國家。公元1200年左右,歐洲的學者正式採用了這些符號和體系。至13世紀,在義大利比薩的數學家斐波那契的倡導下,歐洲人也開始採用阿拉伯數字,15世紀時這種現象已相當普遍。那時的阿拉伯數字的形狀與現代的阿拉伯數字尚不完全相同,只是比較接近而已,為使它們變成今天的1、2、3、4、5、6、7、8、9、0的書寫方式,又有許多數學家花費了不少心血。

閱讀全文

與4數學的意義是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1421
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1002
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071