導航:首頁 > 數字科學 > 小學數學基礎知識指什麼

小學數學基礎知識指什麼

發布時間:2022-07-08 05:04:23

❶ 小學數學基礎知識概念

六年級數學上冊概念與公式匯總
1.分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2. (1)分數乘整數的運演算法則:分子與整數相乘,分母不變。
(2)分數乘分數的運演算法則:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
3.積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。當b >1時,a×b >a.
一個數(0除外)乘小於1的數,積小於這個數。當b <1時,a×b <a (b≠0).
一個數(0除外)乘等於1的數,積等於這個數。當b =1時,a×b =a .
4.分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
5. (1)數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。作用:確定一個點的位置。經度和緯度就是這個原理。圖形左、右平移:列變,行不變 ;圖形上、下平移: 行變,列不變。
(2)位置與方向 確定物體位置的條件:一是確定方向,二是確定距離。
6. 倒數的意義:乘積為1的兩個數互為倒數。1的倒數是它本身,因為1×1=1,0沒有倒數,因為任何數乘0積都是0,且0不能作分母。真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。 假分數的倒數小於或等於1。帶分數的倒數小於1。
7.分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
8.比:兩個數相除也叫兩個數的比。比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
9比和除法、分數的聯系與區別:

除法

被除數

除號(÷)

除數(不能為0)

商不變性質

除法是一種運算

分數

分子

分數線(—)

分母(不能為0)

分數的基本性質

分數是一個數



前項

比號(∶)

後項(不能為0)

比的基本性質

比表示兩個數的關系

10. 比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。根據比的基本性質可以化簡比,化簡之後結果還是一個比,不是一個數。
11.圓的特徵
(1)圓是平面內封閉曲線圍成的平面圖形。
(2)圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。直徑d: 通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。同圓或等圓內直徑是半徑的2倍。
12.畫圓
(1)圓規兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
13.圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
(1)圓的周長總是直徑的三倍多一些。
(2)圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
(3)周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
(4)半圓周長=圓周長一半+直徑=2(1)×2πr=πr+dw
(5)前進的米數=圓周長×轉數 轉數=前進的米數÷圓周長 時間=前進的米數÷(圓周長×轉數)
14.圓面積
(1)公式的推導如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。圓的半徑 = 長方形的寬,圓的周長的一半 = 長方形的長,長方形面積 = 長 ×寬,所以:圓的面積 = 長方形的面積 = 長 ×寬 = 圓的周長的一半(πr)×圓的半徑(r),圓的面積S = πr × r = πr2
(2)圓、正方形、長方形幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
(3)圓面積的變化的規律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
15.跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
16.任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π
17.有關圓的常用公式與數據
(1)r=2(d)(已知直徑求半徑) d=2r(已知半徑求直徑) C=πd(已知直徑求周長) C=2πr(已知半徑求周長) d=π(C)(已知周長求直徑)
r=2π(C)(已知周長求半徑) S=πr2(已知半徑求面積) S=π(2(d))2 (已知直徑求面積) S=π(2π(C))2 (已知周長求面積) S環=π(R2-r2)
(2)3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.70
3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26xKb 1.Com
(3)112 =121 122 =144 132 =169 142=196 152 =225 162 =256 172=289 182=324 192 =361 202=400
18. (1)表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。
(2)百分數和分數的區別和聯系:
聯系:都可以用來表示兩個量的倍比關系。區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只以是整數。
註:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。
19小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉「%」。(2)小數化百分數:小數點向右移動兩位,添上「%」。
(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。
(5)小數 化 分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數 化 小數:分子除以分母。
20.有關百分數的常用數據與公式
(1)2(1)=0.5=50% 4(1)=0.25=25% 4(3)=0.75=75% 5(1)=0.2=20% 5(2)=0.4=40% 5(3)=0.6=60% 5(4)=0.8=80%
8(1)=0.125=12.5% 8(3)=0.375=37.5% 8(5)=0.625=62.5% 8(7)=0.875=87.5% 20(1)=0.05=5% 25(1)=0.04=4% 50(1)=0.02=2%
(2)及格率=全班人數(及格人數)×100% 優分率=全班人數(優分人數)×100% 合格率=產品總數(合格產品數)×100% 發芽率=試驗種子數(發芽種子數)×100%
出油率=花生仁千克數(出油千克數)×100% 出粉率=小麥千克數(麵粉千克數)×100% 出勤率=應出勤人數(實際出勤人數)×100% 成活率=種植總棵數(成活棵數)×100%
註:一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
21. 扇形統計圖
用整個圓的面積表示總數,用扇形面積表示各部分所佔總數的百分數。優點:很清楚地表示出各部分同總數之間的關系。
制扇形統計圖的一般步驟:
(1)先算出各部分數量占總量的百分之幾。
(2)再算出表示各部分數量的扇形的圓心角度數。
(3)取適當的半徑畫一個圓,並按照上面算出的圓心角的度數,在圓里畫出各個扇形。
(4)在每個扇形中標明所表示的各部分數量名稱和所佔的百分數,並用不同顏色或條紋把各個扇形區別開。
22. 數學廣角——數與形: 連續奇數的等差數列之和等於某平方數。 等比數列之和等於1。

❷ 小學數學的基礎知識有哪些

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

❸ 小學數學知識點有哪些

數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.

(同學們開講)

學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.

❹ 小學數學四基指什麼

「四基」:基礎知識、基本技能、基本思想、基本活動經驗.
「四基」與數學素養的培養進行整合:
掌握數學基礎知識,訓練數學基本技能,領悟數學基本思想,積累數學基本活動經驗.

❺ 小學數學基礎知識有哪些

小學一年級 九九乘法口訣表。學會基礎加減乘。小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。小學六年級 比例百分比概率,圓扇圓柱及圓錐。必背定義、定理公式三角形的面積=底×高÷2。 公式 S= a×h÷2正方形的面積=邊長×邊長 公式 S= a×a長方形的面積=長×寬 公式 S= a×b平行四邊形的面積=底×高 公式 S= a×h梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2內角和:三角形的內角和=180度。長方體的體積=長×寬×高 公式:V=abh長方體(或正方體)的體積=底面積×高 公式:V=abh正方體的體積=棱長×棱長×棱長 公式:V=aaa圓的周長=直徑×π 公式:L=πd=2πr圓的面積=半徑×半徑×π 公式:S=πr2圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh圓錐的體積=1/3底面×積高。公式:V=1/3Sh分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。分數的乘法則:用分子的積做分子,用分母的積做分母。分數的除法則:除以一個數等於乘以這個數的倒數。讀懂理解會應用以下定義定理性質公式一、算術方面1、加法交換律:兩數相加交換加數的位置,和不變。2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。3、乘法交換律:兩數相乘,交換因數的位置,積不變。4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。8、什麼叫方程式?答:含有未知數的等式叫方程式。9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。15、分數除以整數(0除外),等於分數乘以這個整數的倒數。16、真分數:分子比分母小的分數叫做真分數。17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。20、一個數除以分數,等於這個數乘以分數的倒數。21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面(南京家教網整理)1、單價×數量=總價2、單產量×數量=總產量3、速度×時間=路程4、工效×時間=工作總量5、加數+加數=和 一個加數=和+另一個加數被減數-減數=差 減數=被減數-差 被減數=減數+差因數×因數=積 一個因數=積÷另一個因數被除數÷除數=商 除數=被除數÷商 被除數=商×除數

❻ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

❼ 小學數學分為幾大塊每塊都包括什麼內容

分為四大塊,分別是數與代數,圖形與幾何,統計與概率,綜合與實踐。

1、數與代數主要包括,數的讀寫方法(整數,小數,分數),數的改寫(化成用萬、億作單位的數,求近似數等),數的大小比較(整數,小數,分數的大小比較),四則運算(計演算法則,運算順序,運算定律等),

量的計量(質量,長度,面積,時間,體積(容積)、人民幣等,以及單位間的換算)。

2、幾何與圖形包括,認識圖形(圖形的名稱,各部分名稱,特點,性質,圖形之間的關系等等),觀察物體,計算平面圖形的面積、立體圖形的表面積和體積,圖形的運動(平移和旋轉),位置與方向等。

3、統計與概率主要包括:統計表,統計圖(條形,扇形,折線等等)平均數眾數,概率等。


(7)小學數學基礎知識指什麼擴展閱讀:

意義:

小學數學的基礎知識包括:概念、定律、性質、法則、公式等,其中數學概念不僅是數學基礎知識的重要組成部分,而且是學習其他數學知識的基礎。學生掌握基礎知識的過程,實際上就是掌握概念並運用概念進行判斷、推理的過程。數學中的法則都是建立在一系列概念的基礎上的。

❽ 小學數學知識的相關基礎理論知識有哪些

小學數學學習概述
數學學習主要是對學生數學思維能力的培養。這要以數學基礎知識和基本技能為基礎,以數學問題為誘因,以數學思想方法為核心,以數學活動為主線,遵循數學的內在規律和學生的思維規律開展教學。

學習類型分析
1.方式性分類
(1)接受學習與發現學習
定義:將學習的內容以定論的形式呈現給學習者的學習方式。
模式:呈現材料—講解分析—理解領會—反饋鞏固
(2)發現學習
定義:向學習者提供一定的背景材料,由學習者獨立操作而習得知識的學習方式。
模式:呈現材料—假設嘗試—認知整合—反饋鞏固。
2.知識性分類一
(1)知識學習 定義:以理解、掌握數學基礎知識為主的學習活動。過程:選擇—領會—習得——鞏固
(2)技能學習
定義:將一連串(內部或外部的)動作經練習而形成熟練的、自動化的反應過程。
過程:演示—模仿—練習—熟練—自動化
(3)問題解決學習
以關心問題解決過程為主、反思問題解決思考過程的一種數學學習活動。
提出問題—分析問題—解決問題—反思過程
3.知識性分類二
(1)概念性(陳述性)知識的學習
把數學中的概念、定義、公式、法則、原理、定律、規則等都稱為概念性知識。
概念學習:同化與形成。
利用已有概念來學習相關新概念的方式,稱概念同化;依靠直接經驗,從大量的具體例子出發,概括出新概念的本質屬性的方式,稱為概念形成。概念形成是小學生獲得數學概念的主要形式。
(2)技能性(程序性)知識的學習
小學數學技能主要是運算技能。 運算技能的形成分為三個階段:
①認知階段:「引導式」的嘗試錯誤。從老師演算例題或自學法則中初步了解運演算法則,在頭腦中形成運算方法的表徵。②聯結階段:法則階段,即按法則一步步地運算,保證算對(使用法則解決問題,陳述性知識提供了基本的操作線索)—程序化階段(將相關的小法則整合為整體的法則系統,此時概念性知識已退出),能算得比較快速正確。③自動化階段:更清楚更熟練地應用第二階段中的程序,通過較多的練習,不再思考程序,達到一定程序的自動化,獲得了運算的速度和較高的正確率。
(3)問題解決(策略性知識)的學習
通過重組所掌握的數學知識,找出解決當前問題的適用策略和方法,從而獲得解決問題的策略的學習。
小學生解決問題的主要方式,一是嘗試錯誤式(又稱試誤法),即通過進行無定向的嘗試,糾正暫時性
嘗試錯誤,直至解決問題;二是頓悟式(也稱啟發式),好像答案或方法是突然出現的,而實際上是有一
定的「心向」作基礎的,這就是問題解決所依據的規則、原理的評價和識別。
4.任務性分類
(1)記憶操作類學習
如口算、尺規作(畫)圖和掌握基本的運演算法則並能進行准確計算等。
(2)理解性的學習
如認識並掌握概念的內涵、懂得數學原理並能用於解釋或說明、理解一個數學命題並能用於推得新命題。
(3)探索性的學習
如需要讓學生經過自己探索,發現並提出問題或學習任務,讓學生通過自己的探究能總結出一個數學規律或規則,讓學生通過自己的探究過程而逐步形成新的策略性知識等。
小學生數學認知學習
一、小學生數學認知學習的基本特徵
1.生活常識是小學生數學認知的起點
要在兒童的生活常識和數學知識之間構建一座橋梁,讓兒童從生活常識和經驗出發,不斷通過嘗試、探索和反思,從而達到「普通常識」的「數學化」。
2.小學生數學認知是一個主體的數學活動過程
數學認知過程要成為一個「做數學」的過程,讓兒童從生活常識出發,在「做數學」的過程中,去發現、了解、體驗和掌握數學,去認識數學的價值、了解數學的特性、總結數學的規律,去學會用數學、提高數學修養、發展數學能力。
3.小學生數學認知思維具有直觀化的特徵
由於一方面兒童生活常識是其數學認知的基礎,另一方面兒童思維是以直觀具體形象思維為主,所以要以直觀為主要手段,讓兒童理解並構建起數學認知結構。
4.小學生數學認知是一個「再發現」和「再創造」的過程
小學生的數學學習,主要的不是被動的接受學習,而是主動的「再發現」和「再創造」學習的過程。要讓他們在數學活動或是實踐中去重新發現或重新創造數學的概念、命題、法則、方法和原理。
二、小學生數學認知發展的基本規律
1.小學生數學概念的發展
(1)從獲得並建立初級概念為主發展到逐步理解並建立二級概念
(2)從認識概念的自身屬性逐步發展到理解概念間的關系
(3)數學概念的建立受經驗的干擾逐漸減弱
2.小學生數學技能的發展
(1)從依賴結構完滿的示範導向發展到依賴對內部意義的理解
(2)從外部的展開的思維發展到內部的壓縮的思維
(3)數感和符號意識的逐步提高,支持著運算向靈活性、簡潔性和多樣性發展
3.小學生空間知覺能力的發展
(1)方位感是逐步建立的
(2)空間概念的建立逐漸從外顯特徵的把握發展到對本質特徵的把握
(3)空間透視能力是逐步增強的
4.小學生數學問題解決能力的發展
(1)語言表述階段 (2)理解結構階段 (3)多級推理能力的形成 (4)符號運算階段
小學生數學能力的培養
一、數學能力概述
1.能力概述 能力是指個體能勝任某種活動所具有的心理特徵
2.數學能力 數學能力是順利完成數學活動所具備的,且直接影響其活動效率的一種個性心理特徵
(1)運算能力:數據運算、邏輯運算和操作運算
(2)空間想像力:依據實物建立模型、依據模型還原實物、依據模型抽象出特徵、大小和位置關系、模型或實物進行分解與組合等能力
(3)數學觀察能力:對象的概括化、知覺的形式化、對空間結構的知覺和邏輯模式的識別等能力
(4)數學記憶能力:對概括化、形式化的符號、命題、性質及空間結構、邏輯模式等識記與再現的能力
(5)數學思維能力:對已有數學信息運用數學推理的思考方式進行思維的能力。
二、兒童數學思維能力的差異性
1.產生差異的原因 (1)多元智力理論 (2)思維類型不同
2.對待差異的態度 (1)求同存異 (2)揚長避短
三、數學能力的培養
1.培養學生的數學學習興趣
(1)從學生生活經驗著手 (2)從建立問題情境開始 (3)讓學生在「做數學」中學
2.培養基本的數學能力
(1)數學操作能力動手操作既能吸引學生的注意力,又易於激發學生的思維和想像,從而調動學習積極性,培養學習興趣,使學生主動獲得知識。
在操作中,學生既「玩」了,又「學」了,也 「想」了,思維能力得到提高,學習興趣得到培養,書本知識得到理解和消化。
2.數學語言能力
在學生動手操作活動中,還要求學生通過語言表達,對數學概念逐步建立起清晰而深刻的表象,進而自覺而鞏固地掌握數學知識。
學生在表達數學時,要求語言簡潔,運用數學術語准確。嚴謹的數學態度,需要嚴謹的數學語言相伴。
3.問題解決能力
發現、提出、分析、解決數學問題的能力, 是最重要的也是最終數學能力的表現。
(1)創設問題情境,培養問題意識
有目的、有意識地創設問題情境,設障立疑,造成學生對新學知識感到有問題可想,有矛盾可解決的情境,讓學生處於「心求通而不能,口欲言而未得」。
(2)主動探索,增強學生的主體意識
①對問題進行大膽猜想、嘗試解題
從生活經驗出發提出猜想 ,從已有知識經驗基礎上提出猜想。
②通過各種形式交流猜想,選擇更優方案
(3)拓展變化,增強學生的應用意識
強調數學應用,不全是回到測量、制圖、會計等教學活動,而是培養一種應用數學知識和思想方法解決問題的慾望和方式
(4)運用所學知識,解決數學問題
生活中的數學問題很多,在教學中引導學生把生活中的問題抽象為數學問題,這樣既可以加深學生對所學知識的理解,又有助於提高解決問題的能力。如房屋裝修粉刷面積,鋪地用多少塊磚,種植面積與棵數,車輪為什麼製成圓形等。
小學數學課堂教學過程
一、小學數學教學過程的主要矛盾
1.數學教與學的矛盾
教師是主導位,學生是主體。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。
2.小學生的認知特點與數學學科知識間的矛盾
數學的抽象性與小學生認知的具體形象性之間,數學的嚴密性與小學生認知的簡單化、直觀化之間,數學應用的廣泛性與小學生知識面窄、接觸實際生活少之間,都會產生矛盾。
3.小學生認知結構發展水平與教師傳授的
數學知識之間的矛盾 首先,教師對數學知識的傳授與學生對數學知識的理解、掌握之間就有矛盾。其次,教師的數學語言表達與學生對它的理解之間的矛盾。再次,小學生掌握的新知識與舊有知識的矛盾。
二、小學數學教學過程
1.小學數學教學過程是師生交往與互動的過程
交往的基本屬性是互動性和互惠性,交往的基本方式是對話和參與。對小學生而言,交往為他們心態的開放,主體性的凸現,創造性的解放提供了空間;對教師而言,課堂上的交往是與學生共同分享對數學的理解、共同感受學習的快樂。小學數學家教學過程是師生間、學生間的平等對話、交流的過程,這種對話、交流的內容,包括數學知識、技能的信息和情感、態度、態度價值觀等各個方面的信息。師生正是通過這種對話和交流來實現課堂中的師生之間的互動的。
有效的交往互動要注意以下兩個方面:
(1) 要充分調動小學生的主動性、積極性
數學教學過程對數學內容進行探索、實踐與思考的學習過程,學生是學習活動的主體。教師只有引導學生開展觀察、操作、比較、猜想、推理、交流等多種形式的活動,才能促使學生建構自己對數學的理解,進行掌握數學知識和技能,逐步學會從數學的角度觀察事物,思考問題,產生學習數學的興趣與願望。
(2)要實現教師角色的轉變
教師的主導作用可在以下活動中得到體現。
①調動學生的學習積極性,激發學生的學習動機,引導學生積極主動地投入到學習活動中去。 ②了解學生的想法,有針對性地引導,幫助學生解決學習困難;同時鼓勵不同的觀點,參與學生的討論,評估學習,作出調整。 ③為學生的學習創設一個良好的課堂環境和精神氛圍,引導學生開展積極主動的數學活動。
2.小學數學教學過程是老師引導學生開展數學活動的過程
(1)組織和引導學生經歷「數學化」的過程
學生數學學習應當成為「數學化」的過程。即學生從具體情境出發,經過歸納、抽象和概括等思維活動,尋找數學模型,得出數學結論的過程。教師要善於引導學生把生活經驗上升到數學知識和方法。
(2)師生共同生成與建構數學知識的過程
在學校學習的情境下,教師對於指導學生進行數學知識的建構具有重要的引導和指導作用,教師要注重引導學生有效地建構數學知識,在數學課堂教學過程中「生成」知識與方法。這種「生成」的過程正是通過師生雙方交互作用、教師的外因促使學生的內因而完成的。
(3)在活動中體驗數學,獲得數學發展的過程
小學數學教學過程應成為師生共同參與的活動過程。在這一過程中,教師為學生設計和提供有意義的情境,組織學生共同進行操作、交流、思考等活動。要給學生提供相對充分的時間和空間,讓學生獲得自主探索動手實踐的機會,從現實問題出發學習數學知識的機會,從相關學科和已有知識提出數學問題的機會,對數學內部的規律和原理進行探索和研究的機會。
3.小學數學教學過程是師生共同發展的過程
(1)促進學生的發展 小學數學教學的基本目的是促進學生的發展,為小學生終身發展奠定基礎。學生應該在數學知識與技能、數學思考、解決問題和情感態度價值觀等四個方面得到發展。這四個方面應交織、滲透,密不可分,形成一個整體。
(2)促進教師的專業成長優秀教師都是在教學實踐中成長起來的。 良好的知識結構、能力結構,專業領引,同行間的切磋、交流,不斷的自我反思,是優秀教師成長的關鍵因素。教師的專業能力包括教學設計、教學實施和教學反思等能力。教學過程必須遵循教育規律和兒童身心發展的規律,還要教師有創造性地解決師生、生生間的認知、情感和價值觀的沖突的能力,形成獨具個人魅力的教學風格,教學是一個富有個性化的創造過程。

閱讀全文

與小學數學基礎知識指什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1421
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1002
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071