Ⅰ 怎樣找單位1
找單位一,先看抽象分數前面,然後找關鍵字。口訣:「是」「比」「占」「相當於」後面的為單位一;「的」前面的為單位一。如:男生是女生的幾分之幾。女生就是單位一。女生人數比男生人數多幾分之幾。男生人數就是單位一。
數學意義
1、原有量的單位,(指組成原有量的更小量,如一段路程3個小時走完,平均每個小時走的路程就是一段路程的單位。)或數的單位能轉換成比「1」更小的單位,於是有分數定義:把單位一(或整體「1」)平均分成若干份表示其中的一份或幾份的數是分數。
2、可以以「1」為單位重新定義一個與原有量同單位的其它量,並用分數表示。這個分數也常常被稱為那個其它量的對應分率。
通常把①產生分數的方法稱為切分法,把②產生分數的方法稱為量比法。切分法中「1」處於分子位置,量比法中「1」處於分母位置。
Ⅱ 分數中怎樣找單位 1
小軍年齡是他的2倍還多4歲中,是以小明為單位1。
在倍數中,以誰為標准,誰就是單位1,
在分率中,把誰平均分的誰就是單位1。
一般情況下,倍數或者分率是誰的,誰就是單位1。
如,甲的2倍——甲,乙的2/3——乙。
Ⅲ 小學數學分數單位一怎麼找
小學數學分數單位就是一個分數的分母分之1。
如:2又7分之3的分數單位是7分之1。
Ⅳ 數學題里的單位「1」怎麼找
正確找准單位「1」,是解答分數(百分數)應用題的關鍵,也是教師教學此類應用題的重點和難點。每一道分數應用題中總是有關鍵句(含有分率的句子)。如何從關鍵句中找准單位「1」,我覺得可以從以下這些方面進行考慮。
一、部分數和總數
在同一整體中,部分數和總數作比較關系時,部分數通常作為比較量,而總數則作為標准量,那麼總數就是單位「1」。例如我國人口約佔世界人口的1/5,世界人口是總數,我國人口是部分數,所以,世界人口就是單位「1」。再如,食堂買來100千克白菜,吃了2/5,吃了多少千克?在這里,食堂一共買來的白菜是總數,吃掉的是部分數,所以100千克白菜就是單位「1」。解答這類分數應用題,只要找准總數和部分數,確定單位「1」就很容易了。
二、兩種數量比較
分數應用題中,兩種數量相比的關鍵句非常多。有的是「比」字句,有的則沒有「比」字,而是帶有指向性特徵的「占」、「是」、「相當於」。在含有「比」字的關鍵句中,比後面的那個數量通常就作為標准量,也就是單位「1」。例如:六(2)班男生比女生多1/2。就是以女生人數為標准(單位「1」),男生比女生多的人數作為比較量。在另外一種沒有比字的兩種量相比的時候,我們通常找到分率,看「占」誰的,「相當於」誰的,「是」誰的幾分之幾。這個「占」,「相當於」,「是」後面的數量——誰就是單位「!」。例如,一個長方形的寬是長的5/12。在這關鍵句中,很明顯是以長作為標准,寬和長相比較,也就是說長是單位「1」。又如,今年的產量相當於去年的4/3倍。那麼相當於後面的去年的產量就是標准量,也就是單位「1」。
三、原數量與現數量
有的關鍵句中不是很明顯地帶有一些指向性特徵的詞語,也不是部分數和總數的關系。這類分數應用題的單位「1」比較難找。例如,水結成冰後體積增加了1/10,冰融化成水後,體積減少了1/12。象這樣的水和冰兩種數量到底誰作為單位「1」?兩句關鍵句的單位「1」是不是相同?用上面講過的兩種方法不容易找出單位「1」。其實我們只要看,原來的數量是誰?這個原來的數量就是單位「1」!比如水結成冰,原來的數量就是水,那麼水就是單位「1」。冰融化成水,原來的數量是冰,所以冰的體積就是鼎梗尺妓侔幻躊濰穿璃單位「1」。
Ⅳ 數學找單位一的竅門
分數乘除應用題,關鍵在於找整體,題中若把誰等分,誰當整體用"1"記;題中若有"是"、"占"、「比」,後面一般是整體;已知整體用乘法,除法為了求整體。
誰比誰,比的後項 是單位 1
誰被分,誰就是單位「1」
分誰,誰就是單位「1」
誰的幾分之幾,單位1誰
單位1是拿總量為參照物,其他各部分根據它比較容易得出確切的百分比,為解題提供途徑。
舉個例子,一個果農第一天賣出蘋果10千克,第二天賣出的比第一天多50%,求第二天賣多少?
這道題的解為 第二天賣出的蘋果總量=10乘(1+50%)=15千克
其中的「1」,就是拿第一天賣出的蘋果總量為參照的。理解一下,希望可以舉一反三。
Ⅵ 小學六年級數學百分數的應用中該怎樣找准單位「1」
一般來說,***的幾%,的前面的量為單位1,***比**多(或少)幾%時,比字後面的為單位1,如果沒有這兩個次,如增加、減少、提高、降低百分之幾等 ,均以變化前的那個量為單位1,如:商品先提價10%,再降10%,第一個10%是以原價為單位1,第二個10%是以提後的價格為單位1。還有一種情況,如一堆煤用了20%、一個饅頭吃了50%……這樣的情況,一般是以總體為單位1
Ⅶ 怎樣找到分數數學題中的單位"1"呢
正確找准單位「1」,是解答分數(百分數)應用題的關鍵,也是教師教學此類應用題的重點和難點。每一道分數應用題中總是有關鍵句(含有分率的句子)。如何從關鍵句中找准單位「1」,我覺得可以從以下這些方面進行考慮。
一、部分數和總數
在同一整體中,部分數和總數作比較關系時,部分數通常作為比較量,而總數則作為標准量,那麼總數就是單位「1」。例如我國人口約佔世界人口的1/5,世界人口是總數,我國人口是部分數,所以,世界人口就是單位「1」。再如,食堂買來100千克白菜,吃了2/5,吃了多少千克?在這里,食堂一共買來的白菜是總數,吃掉的是部分數,所以100千克白菜就是單位「1」。解答這類分數應用題,只要找准總數和部分數,確定單位「1」就很容易了。
二、兩種數量比較
分數應用題中,兩種數量相比的關鍵句非常多。有的是「比」字句,有的則沒有「比」字,而是帶有指向性特徵的「占」、「是」、「相當於」。在含有「比」字的關鍵句中,比後面的那個數量通常就作為標准量,也就是單位「1」。例如:六(2)班男生比女生多1/2。就是以女生人數為標准(單位「1」),男生比女生多的人數作為比較量。在另外一種沒有比字的兩種量相比的時候,我們通常找到分率,看「占」誰的,「相當於」誰的,「是」誰的幾分之幾。這個「占」,「相當於」,「是」後面的數量——誰就是單位「!」。例如,一個長方形的寬是長的5/12。在這關鍵句中,很明顯是以長作為標准,寬和長相比較,也就是說長是單位「1」。又如,今年的產量相當於去年的4/3倍。那麼相當於後面的去年的產量就是標准量,也就是單位「1」。
三、原數量與現數量
有的關鍵句中不是很明顯地帶有一些指向性特徵的詞語,也不是部分數和總數的關系。這類分數應用題的單位「1」比較難找。例如,水結成冰後體積增加了1/10,冰融化成水後,體積減少了1/12。象這樣的水和冰兩種數量到底誰作為單位「1」?兩句關鍵句的單位「1」是不是相同?用上面講過的兩種方法不容易找出單位「1」。其實我們只要看,原來的數量是誰?這個原來的數量就是單位「1」!比如水結成冰,原來的數量就是水,那麼水就是單位「1」。冰融化成水,原來的數量是冰,所以冰的體積就是單位「1」。
Ⅷ 數學題怎麼樣找單位「1」
正確找准單位「1」,是解答分數(百分數)應用題的關鍵,也是教師教學此類應用題的重點和難點。每一道分數應用題中總是有關鍵句(含有分率的句子)。如何從關鍵句中找准單位「1」,我覺得可以從以下這些方面進行考慮。
一、部分數和總數
在同一整體中,部分數和總數作比較關系時,部分數通常作為比較量,而總數則作為標准量,那麼總數就是單位「1」。例如我國人口約佔世界人口的1/5,世界人口是總數,我國人口是部分數,所以,世界人口就是單位「1」。再如,食堂買來100千克白菜,吃了2/5,吃了多少千克?在這里,食堂一共買來的白菜是總數,吃掉的是部分數,所以100千克白菜就是單位「1」。解答這類分數應用題,只要找准總數和部分數,確定單位「1」就很容易了。
二、兩種數量比較
分數應用題中,兩種數量相比的關鍵句非常多。有的是「比」字句,有的則沒有「比」字,而是帶有指向性特徵的「占」、「是」、「相當於」。在含有「比」字的關鍵句中,比後面的那個數量通常就作為標准量,也就是單位「1」。例如:六(2)班男生比女生多1/2。就是以女生人數為標准(單位「1」),男生比女生多的人數作為比較量。在另外一種沒有比字的兩種量相比的時候,我們通常找到分率,看「占」誰的,「相當於」誰的,「是」誰的幾分之幾。這個「占」,「相當於」,「是」後面的數量——誰就是單位「!」。例如,一個長方形的寬是長的5/12。在這關鍵句中,很明顯是以長作為標准,寬和長相比較,也就是說長是單位「1」。又如,今年的產量相當於去年的4/3倍。那麼相當於後面的去年的產量就是標准量,也就是單位「1」。
三、原數量與現數量
有的關鍵句中不是很明顯地帶有一些指向性特徵的詞語,也不是部分數和總數的關系。這類分數應用題的單位「1」比較難找。例如,水結成冰後體積增加了1/10,冰融化成水後,體積減少了1/12。象這樣的水和冰兩種數量到底誰作為單位「1」?兩句關鍵句的單位「1」是不是相同?用上面講過的兩種方法不容易找出單位「1」。其實我們只要看,原來的數量是誰?這個原來的數量就是單位「1」!比如水結成冰,原來的數量就是水,那麼水就是單位「1」。冰融化成水,原來的數量是冰,所以冰的體積就是單位「1」。
Ⅸ 數學題如何找單位「1」
分誰誰就是單位1
誰被分誰就是單位1
注意省略句
加否定詞
如用去,用去沒有用去以前的(就是總數的)
增加未增加以前的,降低未降低以前等等