導航:首頁 > 數字科學 > 怎麼弄數學建模

怎麼弄數學建模

發布時間:2022-07-09 01:13:45

㈠ 數學建模的步驟

數學建模的主要步驟:

第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建

模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以

高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應

盡量使問題線性化、均勻化。

第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間

的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老

人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱

大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工

具愈簡單愈有價值。

第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,

特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計

算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作

出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差

分析,數據穩定性分析。

數學建模採用的主要方法有:

(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模

型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策

等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。

(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。

(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀

態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構


3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的

可能變化,人為地組成一個系統。
希望能解決您的問題。

㈡ 想要弄好數學建模,需要做什麼准備

做數學建模,一部分靠實力,一部分靠運氣,如果沒有實力,即使運氣來了,
都不能很好的把握住。所以,如果想要拿獎:
1)一個團結的隊伍是必不可少的。全是牛人的隊伍不一定是好的隊伍,那
樣容易各自為政;即使大家水平都一般,也不見得比牛人的隊伍差,關鍵在於取
長補短,真心奉獻,不攀比,不鬥氣,服從隊長,萬事以比賽為主,即使有時大
家討論時語氣過激,也是可以諒解的,一心一意把比賽做好才是關鍵。所以隊長
的作用是毋庸置疑的,寬廣的胸懷和縝密的心思,大局意識,一定要把大家的積
極性調動到最高。
2)比賽前期的准備。每個人列個清單,准備好4 台電腦,以防有突發事件,
優盤全部清空,以防有毒,軟體統一安裝,吃的用的,時間安排,等等各方面,
很多細節,都要細心准備。為什麼准備的這么細呢,就是怕建模比賽做起來,才
發現缺少東西或機器壞了,影響做題的心情,從而影響整個隊伍的心情和效率。
比賽期間,專心很關鍵。我們要有打一場大仗的感覺,摩拳擦掌,期待著大幹一
場。如果有這種感覺,那你離獲獎不遠了。
3)檢驗你比賽前到底准備的怎麼樣了。捫心自問:你軟體真正能夠精通的
有幾種?演算法張口就能說出理論及其編程方法的有幾個?你是否已經把各種算
法的主要理論都粘到Word 文檔里(版式都調好),准備隨時可以拿過來用?你
是否把神經網路或者灰色預測編程的模板都在Matlab 里調試過了,程序都已經
准備好了?Word 版本的優秀論文你是否准備好了3 篇最經典的?如果你沒有,
請不要騙自己,真的不要騙自己,也不要騙隊友,不會就是不會,沒有就是沒有,
抓緊時間,在比賽前,盡量把這些問題全部搞定,滿懷信心參加比賽。
4)數學建模比賽也是比賽,超人、牛人也是人,所以,是比賽就會有規則。
你是否對全國賽和美賽的比賽規則詳細了解,做到心中有數?你是否能夠准確把
握比賽的評分要點和評分標准?你是否知道科技文獻或優秀論文的標准寫法?
你是否知道國賽和美賽有多少個不同點?你們隊是否經常在一起討論這些問題,
交流學習經驗?俗話說:知己知彼,百戰不殆。如果你或你們,不知道或沒有做
過,那麼,可能一個評分細節將是你們的論文從一等淪為二等的致命傷。
5
一個人不可能憑借運氣度過一生,運氣能夠陪伴你一刻,而能夠陪伴你一
生的是自己的實力。

㈢ 數學建模怎麼弄,哪位牛人指點一下,帶帶小弟~

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言,把它表述為數學式子,也就是數學模型,然後用通過計算得到的模型結果來解釋實際問題,並接受實際的檢驗。這個建立數學模型的全過程就稱為數學建模。
數學建模國家賽是在開學九月份初。三個人一組,三天的時間完成一篇論文。數學建模有很多的數學方法,主要需要會用MATLAB軟體。有很多分析的方法。

㈣ 數學建模怎麼建立模型

1、模型准備

首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

2、模型假設

根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。

3、模型構成

根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。

這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工具愈簡單愈有價值。

4、模型求解

可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

5、模型分析

對模型解答進行數學上的分析。能否對模型結果作出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論哪種情況都需進行誤差分析,數據穩定性分析。


6、模型檢驗

把數學上分析的結果翻譯回到現實問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性。

7、模型應用

取決於問題的性質和建模的目的。

㈤ 數學建模方法和步驟

數學建模的主要步驟:

第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建

模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以

高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應

盡量使問題線性化、均勻化。

第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間

的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老

人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱

大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工

具愈簡單愈有價值。

第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,

特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計

算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作

出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差

分析,數據穩定性分析。

數學建模採用的主要方法有:

(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模

型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策

等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。

(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。

(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀

態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構


3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的

可能變化,人為地組成一個系統。

㈥ 數學建模的七個步驟

數學建模(mathematical modeling)就是通過建立數學模型來解決各種實際問題的方法。數學建模沒有固定的格式和標准,也沒有明確的方法,通常有6個步驟:

明確問題
合理假設
搭建模型
求解模型
分析檢驗
模型解釋
1、明確問題

數學建模所處理的問題通常是各領域的實際問題,這些問題本身往往含糊不清,難以直接找到關鍵所在,不能明確提出該用什麼方法。因此建立模型的首要任務是辨明問題,分析相關條件和問題,一開始盡可能使問題簡單,然後再根據目的和要求逐步完善。

2、合理假設

作出合理假設,是建模的一個關鍵步驟。一個實際問題不經簡化、假設,很難直接翻譯成數學問題,即使可能也會因其過於復雜而難以求解。因此,根據對象的特徵和建模的目的,需要對問題進行必要合理地簡化。

合理假設的作用除了簡化問題,還對模型的使用范圍加以限定。

作假設的依據通常是出於對問題內在規律的認識,或來自對數據或現象的分析,也可以是兩者的綜合。作假設時,既要運用與問題相關的物理、化學、生物、經濟、機械等專業方面的知識,也要充分發揮想像力、洞察力和判斷力,辨別問題的主次,盡量使問題簡化。

為保證所作假設的合理性,在有數據的情況下應對所作的假設及假設的推論進行檢驗,同時注意存在的隱含假設。

3、搭建模型

搭建模型就是根據實際問題的基本原理或規律,建立變數之間的關系。

要描述一個變數隨另一個變數的變化而變化,最簡單的方法是作圖,或者畫表格,還可以用數學表達式。在建模中,通常要把一種形式轉換成另一種形式。將數學表達式轉換成圖形和表格較容易,反過來則比較困難。

用一些簡單典型函數的組合可以組成各種函數形式。使用函數解決具體的實際問題,還比須給出各參數的值,尋求這些參數的現實解釋,往往可以抓住問題的一些本質特徵。

4、求解模型

對模型的求解往往涉及不同學科的專業知識。現代計算機科學的發展提供了強有力的輔助工具,出現了很多可進行工程數值計算和數學推導的軟體包和模擬工具,熟練掌握數學建模的模擬工具可大大增強建模能力。

不同數學模型的求解難易不同,一般情況下很多實際問題不能求出解析解,因此需要藉助計算機用數值的方法來求解,在編寫代碼之前要明確演算法和計算步驟,弄清初始值、步長等因素對結果的影響。

5、分析檢驗

在求出模型的解後,必須對模型和「解」進行分析,模型和解的適用范圍如何,模型的穩定性和可靠性如何,是否到達建模目的,是否解決了問題?

數學模型相對於客觀實際不可避免地會帶來一定誤差,一方面要根據建模的目的確定誤差的允許范圍,另一方面要分析誤差來源,想辦法減小誤差。

一般誤差有以下幾個來源,需要小心分析檢驗:

模型假設的誤差:一般來說模型難以完全反映客觀實際,因此需要做不同的假設,在對模型進行分析時,需要對這些假設小心檢驗,分析比較不同假設對結果的影響。
求近似解方法的誤差:一般來說很難得到模型的解析解,在採用數值方法求解時,數值計算方法本身也會有誤差。這類誤差許多是可以控制的。
計算工具的舍入誤差:在用計算器或計算機進行數值計算時,都不可避免由於機器字長有限而產生舍入誤差,如果進行了大量運算,這些誤差的積累是不可忽視的。
數據的測量誤差:在用感測器、調查問卷等方法獲得數據時,應注意數據本身的誤差。
6、模型解釋

數學建模的最後階段是用現實世界的語言對模型進行翻譯,這對使用模型的人深入了解模型的結果是十分重要的。模型和解是否有實際意義,是否與實際證據相符合。這一步是使數學模型有實際價值的關鍵一步。

相關閱讀

數學模型和數學建模介紹

數學建模常用的

㈦ 數學建模如何快速入門

本人有幸參加了今年的全國大學生數學建模,並獲得了全國二等獎,現在就我這大半年對數學建模的認識跟你說幾點:
1、你對數學建模得有興趣,沒興趣的話最好是別去參加,因為要學的東西很多,需要很多時間。
2、你最好得有電腦,不管是查資料檢索文件,還是學習相關的軟體都得在電腦上操作,有時候編程經常弄到晚上半夜很正常。
3、多看看最近幾年的數模全國獎的優秀論文培養寫作和數學建模的思維和素質。
4、多找數學系的老師和在數模方面獲過全國獎的學生進行交流。
5、在每年的3月份開始自己在全校范圍內征詢隊友,相互交流,培養默契。
6、軟體方面:數值計算方面:matlab、線性規劃方面:lingo、數理統計方面:spss、SRS、然後還得會公式編輯器mathtype。當然不是你都得學,可以和隊友分工協作沒人針對自己的情況學習1到2個軟體。
7、關於組隊,一隊由三個人組成,隊員的知識結構不能單一,我們隊今年的隊員,我是學力學的,另外兩個分別是:數學系,電子與信息對抗。然後就是每個人得有優勢,會寫作的,學編程的,會檢索文獻的。
還有很多細節就不一一詳細的說了。上面說的這些希望能幫到你。

㈧ 數學建模應該如何做呢!需要了解些什麼!

數學建模首先花點時間選題,選一個資料比較多而且自己比較熟悉的,選好後根據題意結合查閱的文獻進行建模求解。最重要的是寫論文。一般的論文的格式有摘要、問題的背景與重述(一般就是照抄原題,當然加上自己的理解最好)、全局符號說明、模型假設、模型的建立與求解、模型的改進與評價(優缺點都要說)、參考文獻、附錄。論文摘要的寫作是關鍵,所以你的論文摘要一定要寫好。要把你針對問題所建立的模型名稱、計算結果列出來。記住,論文是最重要的,一定要寫好。

㈨ 怎樣弄數學建模呀

多看看數據建模的優秀文檔,按照他們的格式來,套用自己知道的方法,或者網上搜索,臨時學到的方法,解決建模中的問題。數學建模,關鍵是自圓其說,可以設置很多的假設,但是要合理,文檔層次要清晰明了,問題的描述需要切合實際,不懂的就多問老師,同學,網路~~嘿嘿,祝你好遠!

㈩ 怎樣建數學模型初一

如何建立數學模型的幾點探索

一、數學模型的定義

現在數學模型還沒有一個統一的准確的定義,因為站在不同的角度可以有不同的定義。不過我們可以給出如下定義:「數學模型是關於部分現實世界和為一種特殊目的而作的一個抽象的、簡化的結構。」具體來說,數學模型就是為了某種目的,用字母、數學及其它數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特徵及其內在聯系的數學結構表達式。一般來說數學建模過程可用如下框圖來表明:

數學是在實際應用的需求中產生的,要解決實際問題就必需建立數學模型,從此意義上講數學建模和數學一樣有古老歷史。例如,歐幾里德幾何就是一個古老的數學模型,牛頓萬有引力定律也是數學建模的一個光輝典範。今天,數學以空前的廣度和深度向其它科學技術領域滲透,過去很少應用數學的領域現在迅速走向定量化,數量化,需建立大量的數學模型。特別是新技術、新工藝蓬勃興起,計算機的普及和廣泛應用,數學在許多高新技術上起著十分關鍵的作用。因此數學建模被時代賦予更為重要的意義。

二、建立數學模型的方法和步驟

1.模型准備
要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
2.模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。
3.模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工具愈簡單愈有價值。
4.模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
5.模型分析
對模型解答進行數學上的分析。「橫看成嶺側成峰,遠近高低各不同」,能否對模型結果作出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差分析,數據穩定性分析。

三、數模競賽出題的指導思想

傳統的數學競賽一般偏重理論知識,它要考查的內容單一,數據簡單明確,不允許用計算器完成。對此而言,數模競賽題是一個「課題」,大部分都源於生產實際或者科學研究的過程中,它是一個綜合性的問題,數據龐大,需要用計算機來完成。其答案往往不是唯一的(數學模型是實際的模擬,是實際問題的近似表達,它的完成是在某種合理的假設下,因此其只能是較優的,不唯一的),呈報的成果是一編「論文」。由此可見「數模競賽」偏重於應用,它是以數學知識為引導計算機運用能力及文章的寫作能力為輔的綜合能力的競賽。

四、競賽中的常見題型

賽題題型結構形式有三個基本組成部分:
1.實際問題背景
涉及面寬——有社會,經濟,管理,生活,環境,自然現象,工程技術,現代科學中出現的新問題等。一般都有一個比較確切的現實問題。
2.- @/ v1 e+ [. h2 d4 n& a0 a1 w若干假設條件
有如下幾種情況:
1)只有過程、規則等定性假設,無具體定量數據;
2)給出若干實測或統計數據;
3)給出若干參數或圖形;
4)蘊涵著某些機動、可發揮的補充假設條件,或參賽者可以根據自己收集或模擬產生數據。
3.2 n9 u8 ]# b; u$ ^0 z要求回答的問題
往往有幾個問題,而且一般不是唯一答案。一般包含以下兩部分:
1)比較確定性的答案(基本答案);
2)更細致或更高層次的討論結果(往往是討論最優方案的提法和結果)。
4模型求解。
a.需要建立數學命題時:
命題敘述要符合數學命題的表述規范,盡可能論證嚴密。
b.需要說明計算方法或演算法的原理、思想、依據、步驟。
若採用現有軟體,說明採用此軟體的理由,軟體名稱。
c.計算過程,中間結果可要可不要的,不要列出。
d.設法算出合理的數值結果。
5 結果分析、檢驗;模型檢驗及模型修正;結果表示。
a.最終數值結果的正確性或合理性是第一位的;
b.對數值結果或模擬結果進行必要的檢驗;
結果不正確、不合理、或誤差大時,分析原因, 對演算法、計算方法、或模型進行修正、改進。
c.題目中要求回答的問題,數值結果,結論,須一一列出;
d.列數據問題:考慮是否需要列出多組數據,或額外數據對數據進行比較、分析,為各種方案的提出提供依據;
e.結果表示:要集中,一目瞭然,直觀,便於比較分析

五、建模理念

1.應用意識
要解決實際問題,結果、結論要符合實際;
模型、方法、結果要易於理解,便於實際應用;站在應用者的立場上想問題,處理問題。
2.數學建模
用數學方法解決問題,要有數學模型;
問題模型的數學抽象,方法有普適性、科學性,不局限於本具體問題的解決。
3.創新意識
建模有特點,更加合理、科學、有效、符合實際;更有普遍應用意義;不單純為創新而創新。

閱讀全文

與怎麼弄數學建模相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1421
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1002
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071